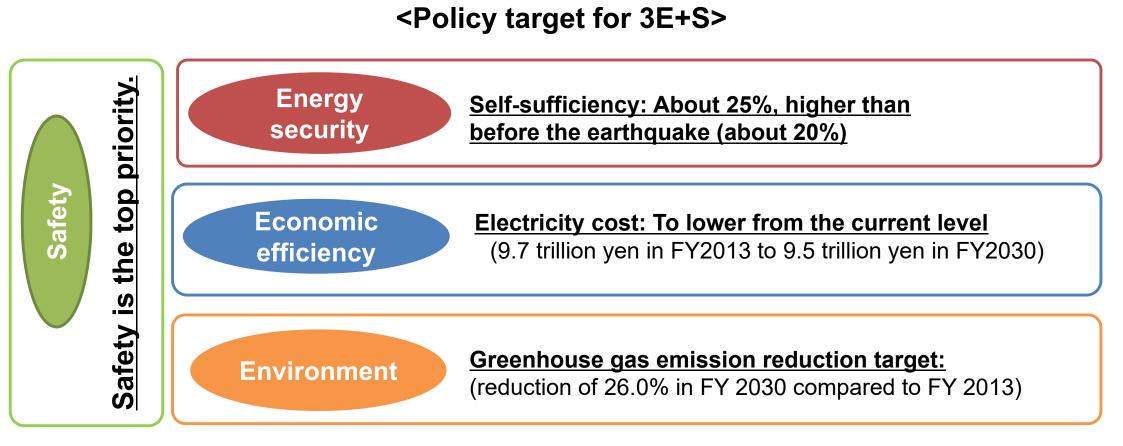

# Japan's Strategic Energy Plan

## April 12<sup>th</sup>, 2018 Agency for Natural Resources and Energies

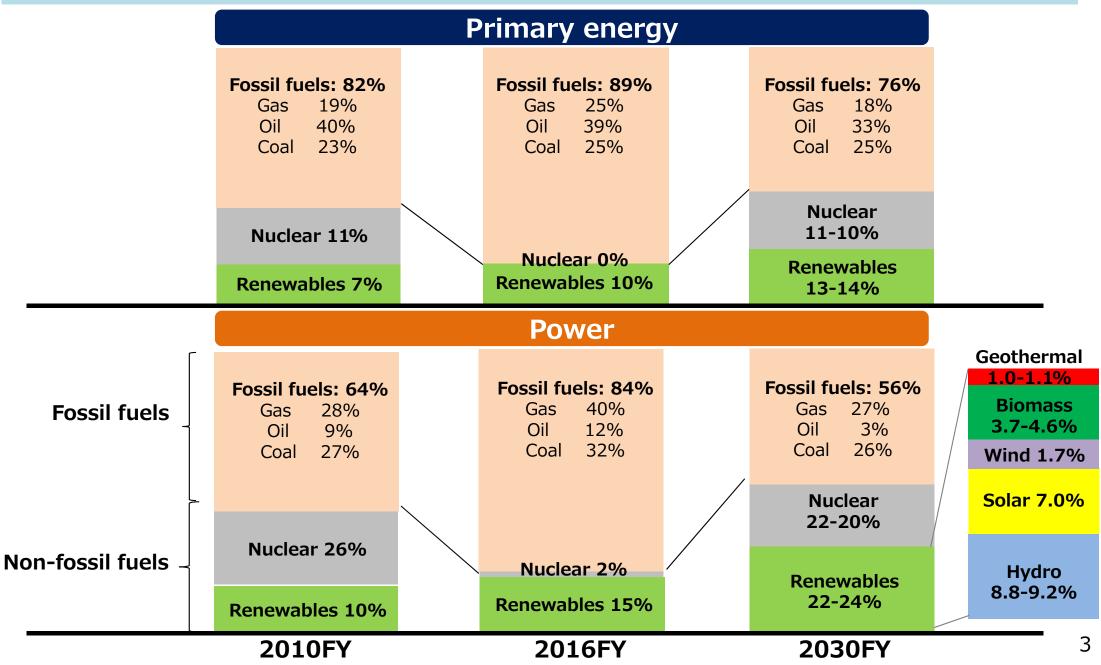
## Japan's Energy Balance in History


- Japan has made decision to secure energy supply to adopt different changes
  - 60's : national coal to oil, 70's : Oil crisis, 90's : Liberalization and global warming, in 2011 : the Great East Earthquake and Fukushima Accident
- Toward the goal of Paris Agreement, Japan should make decision



1

#### Japan's Strategic Energy Plan


- O Based on the Strategic Energy Plan, Japan tackles the policy targets related to <u>Safety, Energy security</u>, <u>Economic efficiency, and Environment</u> simultaneously. (3E+S)
- O The Plan also refers <u>reducing dependence on nuclear power generation as much as possible</u> by promoting energy efficiency and conservation, introduction of renewable energy, and introduction of efficient thermal power plants.



#### **Energy Mix in Japan**

• Energy Mix is a forecast and also a vison of a desired energy structure.

> the goals of "Energy security", "Economic efficiency" and "Environment" are achieved



#### Low Self sufficiency Rate

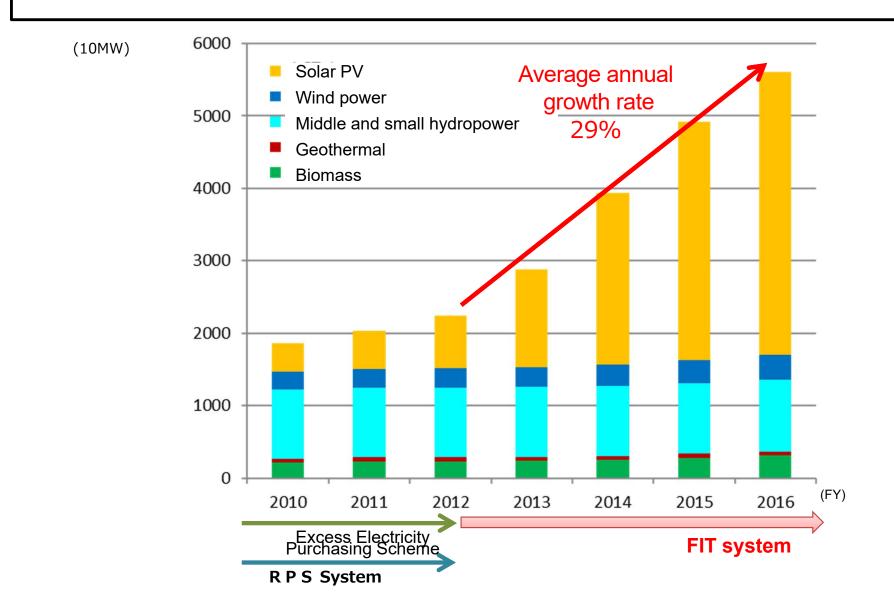
• There are no nationally resources. It's important to improve the self sufficiency rate.

|         | Self Sufficiency<br>(2000) | Self Sufficiency<br>(2016)     | <b>Primary Nationally</b><br><b>Produced Resources</b> |
|---------|----------------------------|--------------------------------|--------------------------------------------------------|
| U.S.    | 73%                        | *China/India = $2015$<br>88%/0 | Natural Gas<br>Coal, Petroleum                         |
| U.K.    | 74%                        | <b>67%</b>                     | Petroleum                                              |
| Germany | <b>40%</b>                 | 37%                            | Coal                                                   |
| France  | 52%                        | 54%                            | <b>Nuclear Power</b>                                   |
| China   | 98%                        | 84%                            | Coal                                                   |
| India   | 80%                        | 65%                            | Coal                                                   |
| Japan   | 20%                        | 8%                             | None                                                   |

Source: IEA Energy Balances 2017 \*Japan's self sufficiency ratios estimated by Agency for Natural Resources and Energy

#### Japan's imports are particularly reliant on the Middle East. What will be the long-term situation there?

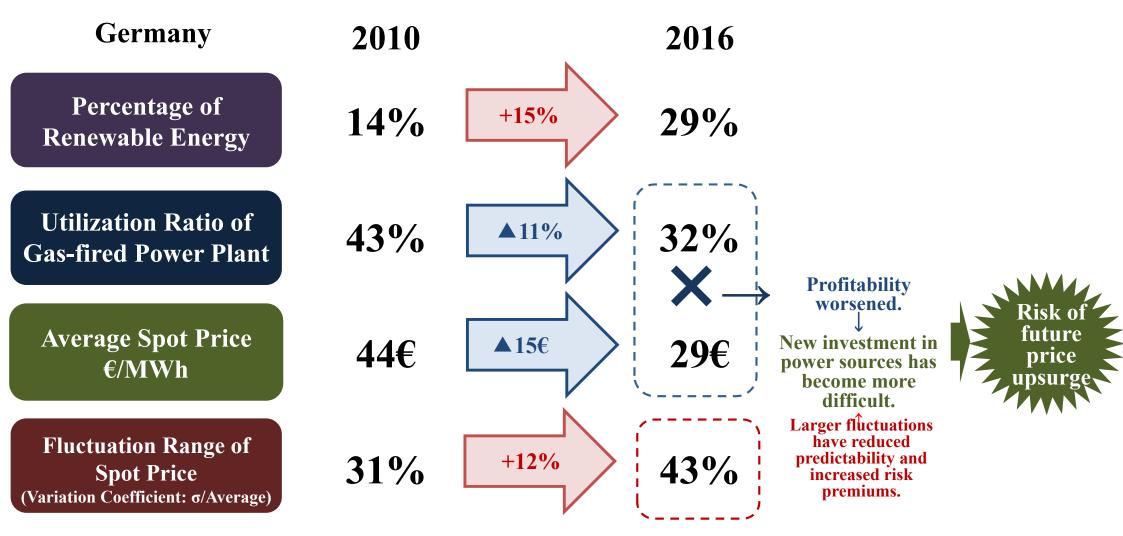
|             |                    | Petro            | oleum                                             | Gas                |                  |                                             |  |
|-------------|--------------------|------------------|---------------------------------------------------|--------------------|------------------|---------------------------------------------|--|
|             | Import<br>Reliance | % Middle<br>East | Largest Importer                                  | Import<br>Reliance | % Middle<br>East | Largest Importer                            |  |
| <b>U.S.</b> | 41%                | 8%               | 15% Connected via<br>Canada                       | 3%                 | 0%               | <b>3%</b><br>Canada                         |  |
| U.K.        | 22%                | 1%               | 12% Connected via<br>Norway Pipeline              | 46%                | 10%              | <b>32%</b> Connected via<br>Norway Pipeline |  |
| Germany     | 96%                | 4%               | 37% Connected via<br>Russia                       | 90%                | 0%               | 44% Connected via<br>Russia                 |  |
| France      | 97%                |                  | 15% Tanker<br>Saudi Arabia<br>Connected via       | 99%                | 2%               | 40% Connected via<br>Norway Pipeline        |  |
| China       | 61%                | 31%              | 9%<br>Saudi Arabia                                | 29%                | 4%               | 15% Connected via<br>Turkmenistan Pipeline  |  |
| India       | 83%                | 46%              | 15% Tanker<br>Transport Saudi Arabia *No pipeline | 40%                | 25%              | <b>22%</b><br>Qatar *No pipeline            |  |
| Japan       | 99%                | 85%              | <b>37%</b> Tanker<br>Saudi Arabia No pipeline     | 98%                | 23%              | 28% Tanker<br>Australia No pipeline         |  |


Source: Produced by Agency for Natural Resources and Energy from IEA/Energy balances etc.

\*Data for China and India is from 2015

#### **History of Introduction of RES**

○FIT system introduced in 2012 causes 2.7 times increase in Renewables.


○ The purchase costs reached 2.3 trillion yen (about 20.9 billion US dollars) and the levy burden to average households amount up to 686 yen/month (about 6.1 US dollars/month)

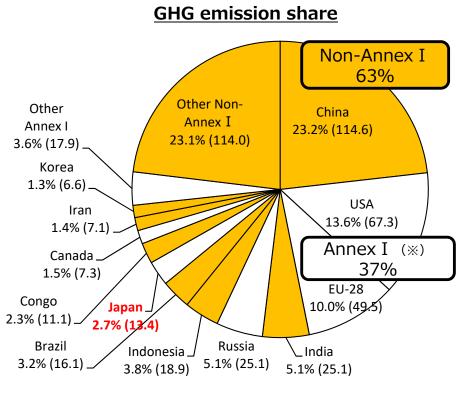


Referred example "Clean energy's dirty secret - Wind and solar power disrupting electricity systems" Economist, Feb 25th 2017

|            | (i) Cost                                          | (ii) Operating<br>reserves                                                     | (iii) NW                                                                                     |
|------------|---------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Current    | Significantly<br>declined<br>in foreign countries | Depending on<br>thermal power as<br>operating reserves                         | Constructed in<br>accordance with the<br>locations of thermal<br>and nuclear power<br>plants |
| Challenges | Reduce higher cost<br>in Japan                    | Maintain thermal<br>power as operating<br>reserves<br>+<br>Reduce battery cost | Restructure NW<br>suitable for<br>renewable energy<br>+<br>Introduce<br>distributed NW       |

Dissemination of renewable energy with no marginal cost has decreased the capacity utilization of thermal power plants, which leads to declining profitability of large-scale power sources. Fluctuations in spot prices have reduced predictability in investment.




%2010 and 2016 crude oil prices (WTI) at \$79/bbl, \$43/bbl respectively

## **Contributions to Climate Change**

- O Our nationally determined contributions towards post-2020 GHG emission reduction is at the level of a reduction of 26.0% in FY 2030 compared to FY 2013
- O Japan's GHG emission share accounts for only 2.7%. It's important to contribute to the reduction of GHG emission in the world or developing countries.

[Intended Nationally Determined Contributions submitted by major countries]

|                | Compared with<br>1990                                                                                                                                  | Compared with<br>2005       | Compared with<br>2013 |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|--|--|--|
| Japan          | -18.0% (2030)                                                                                                                                          | -25.4% (2030)               | <u>-26.0%</u> (2030)  |  |  |  |
| U.S.           | -14 to 16%<br>(2025)                                                                                                                                   | <u>-26 to 28%</u><br>(2025) | -18 to 21%<br>(2025)  |  |  |  |
| EU             | <u>-40%</u> (2030)                                                                                                                                     | -35% (2030)                 | -24% (2030)           |  |  |  |
| China          | -60% to -65% of carbon dioxide emissions per unit<br>of GDP by 2030 compared to 2005<br>achieve the peaking of carbon dioxide emissions<br>around 2030 |                             |                       |  |  |  |
| South<br>Korea | +81% (2030)                                                                                                                                            | -4% (2030)                  | -22% (2030)           |  |  |  |



(※) : The list of countries which are obliged to reduce GHG emission [Source]CO2 EMISSIONS FROM FUEL COMBUSTION2016(IEA)

◆ The U.S. submitted emission reduction target compared to 2005 while the EU submitted its target compared to 1990.

♦ South Korea submitted an emission reduction target of -37% in 2030 compared to the business-as-usual (BAU) scenario.

#### "The Strategic Policy Committee of the Advisory Committee for Natural Resources and Energy" & "Round Table for Studying Energy Situations"

- Periodic review of the plan is necessary and as four years have passed since the formulation of the Strategic Energy Plan, the Strategic Policy Committee of the Advisory Committee for Natural Resources and Energy held the 1<sup>st</sup> meeting on August 9, 2017 to begin those discussions.
- Under the Plan for Global Warming Countermeasures based on the Paris Agreement, Japan decided to aim at achieving an 80% reduction by 2050 as a long-term goal. However, such an ambitious goal may be difficult to achieve if we only continue current efforts. To overcome this challenge, Japan needs to achieve technological innovations and reduce carbon emissions through international contributions. To this end, METI established a Round Table for Studying Energy Situations.

| Member of the St                           | rategic Policy Committee of the Advisory                                                                   | Issei Nishikawa     | Governor, Fukui Prefecture                                                                      |    |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------|----|
| Committee for Natural Resources and Energy |                                                                                                            | Hiroya Masuda       | Nomura Research Institute, Ltd Adviser THE UNIVERSITY<br>OF TOKYO Visiting Professor            |    |
| Masahiro Sakane                            | Councilor, Komatsu Ltd.                                                                                    | Toshihiro Matsumura | Professor, Institute of Social Science, The University of Toky                                  | vo |
| Keigo Akimoto                              | Group Leader, Systems Analysis Group, Research Institute<br>of Innovative Technology for the Earth (RITE)  | Nobuko Mizumoto     | Managing Executive Officer & General Manager,<br>Procurement Strategy Planning, IHI Corporation |    |
| Mami Ito                                   | President & CEO, NIHON DENTO KOUGYO Co., Ltd.                                                              |                     | Professor, Hitotsubashi University, Graduate School of                                          |    |
| Takao Kashiwagi                            | Institute Professor, Tokyo Institute of Technology                                                         | Hirotaka Yamauchi   | Commerce and Management                                                                         |    |
| Takeo Kikkawa                              | Professor, Graduate School of Innovation Studies, Tokyo<br>University of Science                           | Akira Yamaguchi     | Professor, The University of Tokyo, Department of Nuclear Engineerir                            | ng |
| Teiko Kudo                                 | Managing Executive Officer, Sumitomo Mitsui Banking                                                        | Member of Rour      | nd Table for Studying Energy Situations                                                         |    |
|                                            | Corporation                                                                                                | Masami lijima       | Chairman of the Board of Directors, Mitsui & Co., Ltd.                                          |    |
| Yuko Sakita                                | Journalist /Environmental counselor, Represent of<br>NPO"GENKI Network for Creating a Sustainable Society" | Junko Edahiro       | Professor, Tokyo City University<br>Founder and President, e's Inc.                             |    |
| Yoko Takeda                                | Chief Economist Deputy General Manager Research<br>Center For Policy And Economy                           | Makoto Gonokami     |                                                                                                 |    |
|                                            | Standing Advisor, NIPPON ASSOCIATION of CONSUMER                                                           | Masahiro Sakane     | Councilor, Komatsu, Ltd.                                                                        |    |
| Kikuko Tatsumi                             | SPECIALISTS (NACS ) Public Interest Incorporated<br>Association                                            | Takashi Shiraishi   | President, Institute of Developing Economies,<br>Japan External Trade Organization              |    |
| Jitsuro Terashima                          | Chairman, Japan Research Institute, Chairman                                                               | Hiroaki Nakanishi   | Executive Chairman, Hitachi, Ltd.                                                               |    |
| Masakazu Toyoda                            | Chairman and CEO The Institute of Energy Economics, Japan                                                  | Yoichi Funabashi    | Co-founder and Chairman, Asia Pacific Initiative                                                |    |
| Hidetoshi Nakagami                         | Jyukankyo Research Institute Inc. CEO and Founder                                                          | Naoko Yamazaki      | Astronaut                                                                                       | 10 |

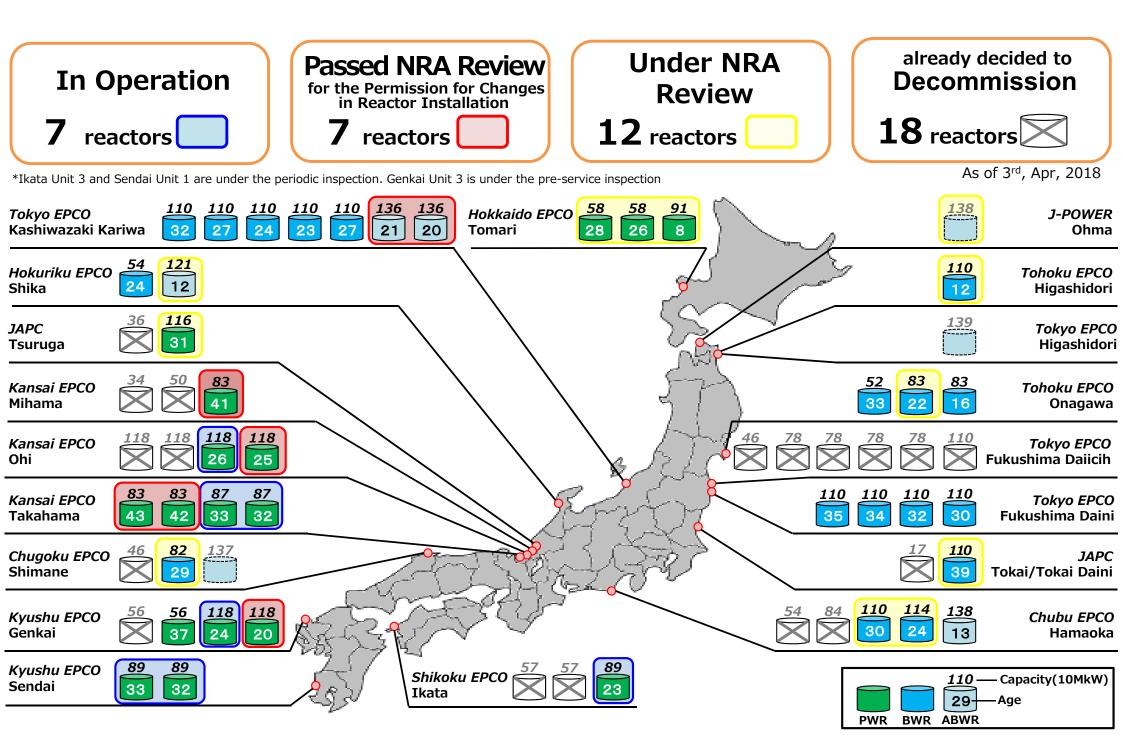
#### Progress in the Energy Mix Policy by FY2030 - Steady advancement seen while half way through -

|                     |                                                                                          | Before the Great East<br>Japan Earthquake<br>(FY2010)                                                         | After the Great East<br>Japan Earthquake<br>(FY2013)                                                                                                                                         | <b>Current</b> (FY2016: estimation)                                                                                                                                                                | Energy Mix<br>(FY2030)                                                                                                          | Progress                                                                                                                                         |
|---------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Effort indices      | [i] Ratio of<br>zero-emission<br>power source                                            | 36 %<br>Renewable energy: 10%<br>Nuclear power: 26%                                                           | 12 %<br>Renewable energy: 11%<br><u>Nuclear power: 1%</u>                                                                                                                                    | 17 %<br><u>Renewable energy: 15%</u><br>Nuclear power: 2%                                                                                                                                          | 44 %<br>Renewable energy: 22 to 24%<br>Nuclear power: 22 to 20%                                                                 | 50%<br>25%<br>0%                                                                                                                                 |
| Effort              | [ii] Energy<br>conservation<br>(Final energy<br>consumption in<br>crude-oil equivalents) | 380 million kl<br><u>Industries and</u><br><u>businesses: 2.4</u><br>Households: 0.6<br>Transport: 0.8        | 360 million kl<br><u>Industries and</u><br><u>businesses: 2.3</u><br>Households: 0.5<br>Transport: 0.8                                                                                       | $350 \text{ million kl} \\ \left( \begin{matrix} \text{Industries and} \\ \text{businesses: 2.2} \\ \underline{\text{Households: 0.5}} \\ \underline{\text{Transport: 0.8}} \end{matrix} \right)$  | 330 million kl<br>Industries and<br>businesses: 2.3<br><u>Households: 0.4</u><br><u>Transport: 0.6</u>                          | 4 FY2010 Economic growth rate: 1.7% / year<br>FY2016 FY2016 FY2030<br>(at the time of<br>formulating the policy) Thorough energy<br>conservation |
| dices               | [iii]<br>CO2 emissions<br>amount<br>(energy-oriented)                                    | 1.13 billion ton                                                                                              | 1.24 billion ton                                                                                                                                                                             | 1.14 billion ton                                                                                                                                                                                   | 0.93 billion ton                                                                                                                | 15<br>10<br>FY2016<br>FY2010<br>FY2030<br>5                                                                                                      |
| Achievement indices | [iv] Power cost<br>(fuel cost +<br>FIT purchase cost)                                    | 5 trillion yen<br>Fuel cost: 5 trillion yen<br>(Crude-oil price: \$84/bbl)<br>FIT purchase:<br>0 trillion yen | 9.8 trillion yen<br>Fuel cost: 9.2 trillion yen<br>(Crude-oil price: \$110/bbl)<br>Quantum factor + 1.6 trillion yen<br>Price factor + 2.7 trillion yen<br>FIT purchase:<br>0.6 trillion yen | 6.2 trillion yen<br>Fuel cost: 4.2 trillion yen<br>(Crude-oil price: \$48/bbl)<br>Quantum factor - 0.9 trillion yen<br><u>Price factor - 4.1 trillion yen</u><br>FIT purchase:<br>2.0 trillion yen | 9.2 to 9.5 trillion yen<br>Fuel cost: 5.3 trillion yen<br>(Crude-oil price: \$128/bbl)<br>FIT purchase:<br>3.7-4.0 trillion yen | $ \begin{array}{c} 15 \\ 10 \\ 5 \\ FY2010 \\ 0 \end{array} $ FY2016                                                                             |
| Achi                | [v] Energy self-<br>sufficiency rate<br>(overall primary energy)                         | 20 %                                                                                                          | 6 %                                                                                                                                                                                          | 8 %                                                                                                                                                                                                | 24 %                                                                                                                            | 30%<br>FY2030<br>FY2010<br>FY2010<br>FY2016                                                                                                      |

\* Figures in FY2016 are the results estimated based on the data in the Energy Supply-Demand Outlook in Japan by FY2018 (prepared by the Institute of Energy Economics, Japan).

\* The power cost in FY2030 includes 0.1 trillion yen as a cost for stable power grids.

(quoted from Strategic Energy Plan 2014)


## <Position>

...Nuclear power is an <u>important base-load power source</u> as a low carbon and quasi-domestic energy source, contributing to stability of energy supply-demand structure, <u>on the major premise of ensuring of its safety</u>, ...

## <Policy Direction>

••• Dependency on nuclear power generation will be lowered to the extent possible by energy saving and introducing renewable energy as well as improving the efficiency of thermal power generation, etc.•••

#### **Nuclear Power Plants in Japan**



#### **Nuclear Energy**

- Restarting nuclear power plants with safe as the top priority, contributing to reducing CO2 emissions and mitigating burden of increased renewable energy cost -

Target share of nuclear power in all power sources in FY2030: 20-22%

- 7 units: Restarted on the premise of secured safety
- 7 units: Permissions for Changes in Reactor Installation granted
- 12 units: Under examination according to the new regulatory requirements

#### **Impacts caused by restarting units**

**Operation of one unit:** 

Reduction of fuel cost  $\rightarrow$  35.0-63.0 billion yen/year\*

**Reduction of CO2 emissions** 

#### $\rightarrow$ 2.60 million - 4.90 million tons/year\*

(Total CO2 emissions per year in Japan: Approx. 1.1 billion tons)

\* These figures are estimated values (FY2016) in the case where a 1 million kW-level nuclear power plant (with the operation rate of 80%) is operated by LNG or oil-fired thermal power in the place of nuclear power.

#### Greatest challenge in the nuclear power field: Recovering social trust <Restoration from damage <Improving safety> <Enhancing disaster prevention> <Final disposal and interim storage> caused by the accident and reconstruction of Fukushima> • Formulated the world's strictest-• Providing a backup system in Publicizing the Nationwide Map of level new regulatory requirements; formulating evaluation plans in Scientific Features for Geological • Sincerely reflecting upon the strict examinations by the Nuclear collaboration among the government Disposal under the leadership of the accident in Fukushima Prefecture and related organizations government, and fostering public **Regulation Authority** The government of Japan intends understanding of these issues • Establishing a system for improving • Enhancing disaster prevention in to proactively lead efforts for continuous and autonomous safety collaboration among related Enhancing efforts for expanding decommissioning, addressing interim-storage capacity of spent fuels organizations, e.g., operational units, contaminated water and and nuclear operators in public-private collaboration reconstruction of Fukushima.

#### Securing technologies and human resources

• Securing personnel with advanced skills, advancing technological development, and promoting investment as necessary measures for restarting and decommissioning of nuclear power plants with safety as the top priority

## The Strategies of Major Countries for 2050

|                                | Reduction                                      | Flexibility                                                                                                                                                                                                                                                                                                              | Main Strategy, Posture                                                                                                                                  |                                                                       |                                                                                     |
|--------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                                | Target                                         | Гіслійніцу                                                                                                                                                                                                                                                                                                               | Zero Emission                                                                                                                                           | Energy Conservation<br>/Electrification                               | Overseas                                                                            |
| United<br>States               | ▲ 80% or<br>more<br>(as percentage of<br>2005) | Ambitious vision towards reduction target<br>(not intended as current policy proposals)<br>providing <u>an ambitious vision</u> to reduce net GHG<br>emissions by 80 percent or more below 2005 levels by<br>2050.                                                                                                       | <b>Increase</b><br>Variable renewable<br>energy<br>+<br>Nuclear power                                                                                   | Large-scale<br>electrification<br>(20%→45~60%)                        | Contribution<br>through<br>expanding<br>market for US<br>products                   |
| Canada                         | ▲ 80%<br>(as percentage<br>of 2005)            | Informing the conversation<br>(not a blue print for action)<br>not a blue print for action. Rather, the report is meant to<br>inform the conversation about how Canada can achieve<br>a low-carbon economy.                                                                                                              | Securing the<br>electricity<br>Hydro power ·<br>Variable renewables<br>+<br>Nuclear power<br>Approx. 80% of electricity<br>source already zero emission | Large-scale<br>electrification<br>(20%→40~70%)                        | Looking to<br>contribute<br>internationally<br>(0~15%)                              |
| France                         | ▲75%<br>(as percentage<br>of 1990)             | Possible path for achieving objectives<br>(not an action plan)the scenario is not an action plan: it rather presents a<br>possible path for achieving our objectives.                                                                                                                                                    | Securing the<br>electricity<br>Renewable<br>energy<br>+<br>Nuclear power<br>* Zero emission rate already at my<br>90%                                   | <b>conservation</b><br>(half as percentage of 1990)                   | Contribution through<br>international<br>evelopment support by<br>French businesses |
| United<br>Kingdom <sup>*</sup> | ▲ 80% or<br>more<br>(as percentage of<br>1990) | Helps players identify steps to take in the next few<br>years by exploring potential pathways<br>(long-term predictions are difficult)<br>exploring the plausible potential pathways to 2050 <u>helps us</u><br>to identify low-regrets steps we can take in the next few<br>years common to many versions of the future | Increase<br>Variable<br>renewables<br>+<br>Nuclear power                                                                                                | Promote energy<br>conservation/elect<br>rification                    | Lead the world<br>through<br>environmental<br>investment                            |
| Germany                        | ▲ 80~95%<br>(as percentage of<br>1990)         | Point to the direction towards<br>reducing emissions<br>(not a search for masterplan)<br>*Conduct regular reviews<br>not a rigid instrument; it points to <u>the direction</u><br>needed to achieve a greenhouse gas-neutral economy.                                                                                    | Increase<br>Variable<br>renewable<br>energy                                                                                                             | Large-scale<br>energy<br>conservation<br>(half as percentage of 1990) | Maintaining<br>and bolstering<br>investment<br>sentiment in<br>LDCs                 |

\* Not yet submitted to UNFCCC as long-term strategy. Created from *The Clean Growth Strategy* (November 2017).

Four Countries decided to phase out Nuclear Power after Fukushima Accident. Many other Countries are choosing Nuclear Power for Carbon Reduction and other Reasons.

|                                                                                                                                                          |                                                                | Use                                                                                                                                                     | e nuclea                        | r power | in the future                                                                      |                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| <ul> <li>United States</li> <li>France</li> <li>China</li> <li>Russia</li> <li>India</li> <li>Canada</li> <li>Ukraine</li> <li>United Kingdor</li> </ul> | [99]<br>[58]<br>[37]<br>[35]<br>[22]<br>[19]<br>[15]<br>m [15] | <ul> <li>Czech</li> <li>Pakistan</li> <li>Finland</li> <li>Hungary</li> <li>Argentina</li> <li>South Afric</li> <li>Brazil</li> <li>Bulgaria</li> </ul> | [6]<br>[5]<br>[4]<br>[4]<br>[3] |         | • Turkey<br>• Belarus<br>• Chile<br>• Egypt<br>• Indonesia<br>• Israel<br>• Jordan | • Kazakhstan<br>• Malaysia<br>• Poland<br>• Saudi Arabia<br>• Thailand<br>• Bangladesh<br>• UAE |

•Netherlands [1]

[2]

[] indicates number of units in operation

Sweden

#### Now using Nuclear Power

• South Korea\* [24] (by cabinet decision 2017, closing expected after 2080)

• Mexico

- •Germany [8] (by legislation in 2011, to be closed in 2022)
- Belgium [7] (by legislation in 2003, to be closed in 2025)
- **Taiwan** [6] (by legislation in 2017, to be closed in 2025)

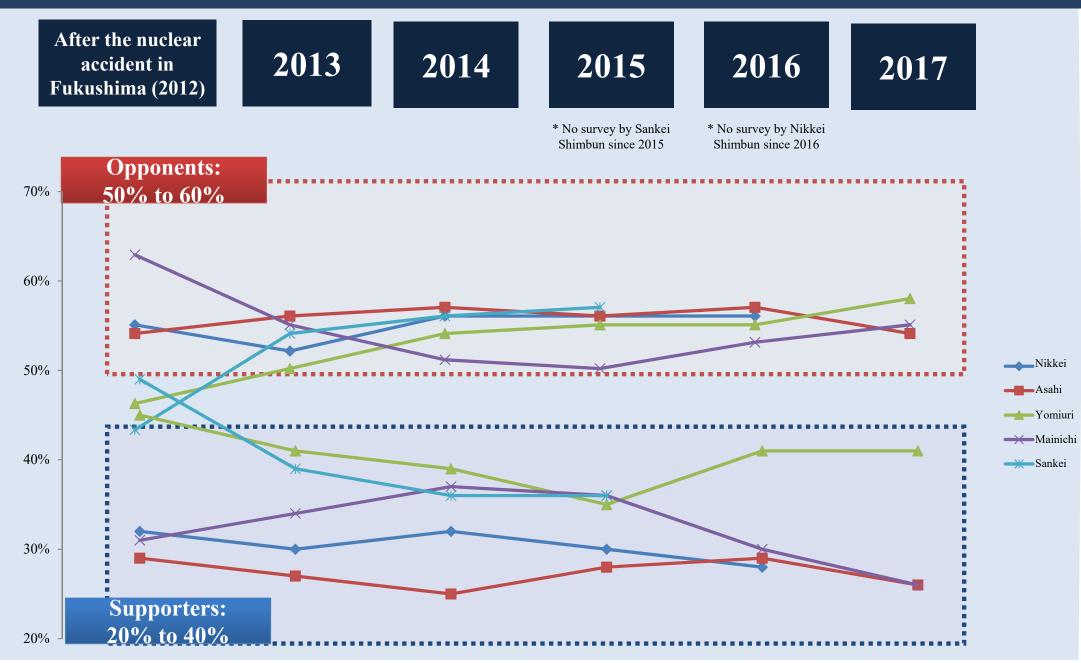
[8]

• Switzerland\*\* [5] (by legislation 2017, closing TBD)

(year nuclear power generation closing determined/year scheduled for closedown) \*In South Korea, 5 reactors are under construction.

(2 of them are decided to continue after deliberative polling)\*\*In Switzerland, there is not placed a limit on years in operation.[]: units in operation

• There are also many countries that have not clarified their stance


#### **Not using Nuclear Power**

- Italy (by cabinet decision 1988, closed down in 1990)
- Austria (by legislation 1979)
- Australia(by legislation 1998)

Source: Created by Agency for Natural Resources and Energy from World Nuclear Association website (viewed August 1, 2017) Note: Only major countries are listed.

Abandon nuclear power in the future

Regarding resumption of operations of nuclear power plants, opponents outnumber supporters two to one. In Japan, the restoration of public trust is the biggest challenge.



**O**How do public opinions concerning nuclear power differ by country?

## CO2 Emissions by sector and corresponding mitigation technologies

|               | N                               | Main factors           | Present                                                                                |            | Future                                                                  |
|---------------|---------------------------------|------------------------|----------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------|
| Trai          | nsport                          | Vehicle<br>Body/System | Internal-combustion engine, manual driving<br>Metal car body                           |            | Electrification, automated driving<br>Multi materials                   |
|               | 0 Mt)                           | Fuel                   | Fossil fuel                                                                            |            | Electricity/Hydrogen<br>Biofuel                                         |
|               | lustry                          | Process                | Development in smart technologies                                                      |            | CCUS/Hydrogen reduction<br>Further development of smart<br>technologies |
| , (31)<br>, 7 | (310 Mt)                        | Product                | Fossil energy materials                                                                |            | Non-fossil energy materials                                             |
|               | Buildings                       | Heat<br>source         | Oil, gas, and electricity                                                              | Innovation | Electricity, hydrogen, etc.                                             |
| (12)          | 20 Mt)                          | Device                 | High-efficiency devices                                                                |            | Devices supporting the IoT<br>M2M control                               |
|               |                                 | Thermal                | Oil, coal, and natural gas                                                             |            | M2M control<br>CCUS and hydrogen power<br>generation etc.               |
| gene          | Power<br>generation<br>(510 Mt) | Nuclear                | Generation III+ reactor                                                                |            | Next-generation reactor                                                 |
| 7             |                                 | Renewable<br>energy    | Challenges of installation<br>(Costs for installation flexibility, grid systems, etc.) |            | Power storage<br>x<br>Innovation in grid system                         |

\* The figures inside ( ) are the amounts of CO2 emissions in FY 2015.

マ

Source: Agency for Natural Resources and Energy 18