International Symposium March 28, 2016 Presentation material

World-Wide Activities towards Geological Disposal and Japanese Direction

Hiroya Masuda Chairman, Radioactive Waste Working Group, Advisory Committee for Natural Resources and Energy

The topics I would like to talk about today

- 1. Geological Disposal is World-Wide Activity
- Background of Selecting "Geological Disposal"
 Based on world-wide R&D and discussion
- 3. Scheme of Implementing Geological Disposal
- 4. Each Country is Making Efforts over Long-Time Period
- 5. Lessons from Advanced Countries

1. Geological Disposal is World-Wide Activity

• Final disposal of high-level radioactive waste

Common issue for all countries which utilize nuclear power

Common policy in each country

- Human control of HLW is difficult because it takes very long time for radioactivity decay
 - Current generation should pave the way for solving the issue not to transfer excessive management burden for future generations
 - For such purpose, HLW need to be properly isolated from human environment for a long time
 - Deep geological disposal in stable rock formation is the best method, no alternative method is identified at the present moment

2. Background of Selecting "Geological Disposal" — Based on world-wide R&D and discussion

Selection of the most suitable disposal method has been studied as a national common issue since the introduction of nuclear power.

1950 – Early 1970s	1970s 1970 – 1980s		1990s –	
 Recognition of issue Explore solutions 	 Establishment of disposal method Internationally shared 	' k		m R&D of geological losal toward implementation
 Long-term storage and management, or final disposal Vulnerability of human control Start of study on geological disposal 	 Increase in consciousness to environmental issue (1975: London Convention (Sea disposal was prohibited)) Establishment of recognition that geological disposal is the best method (1977: OECD/NEA report "Geological disposal is the most advanced method") 		resea • Est imple in ea • Pro	ogress of international arch collaboration tablishment of ementing disposal system ach country ogress of site selection ending on the country)
	Enhancement of R&D for geological disposal in each country			
Japan 1962: R&D for deep sea (*1966: Commencem commercial reactors)	ent of / disposal	gical	/	1999: Geological disposal is technically feasible in Japan

Reference - International discussion

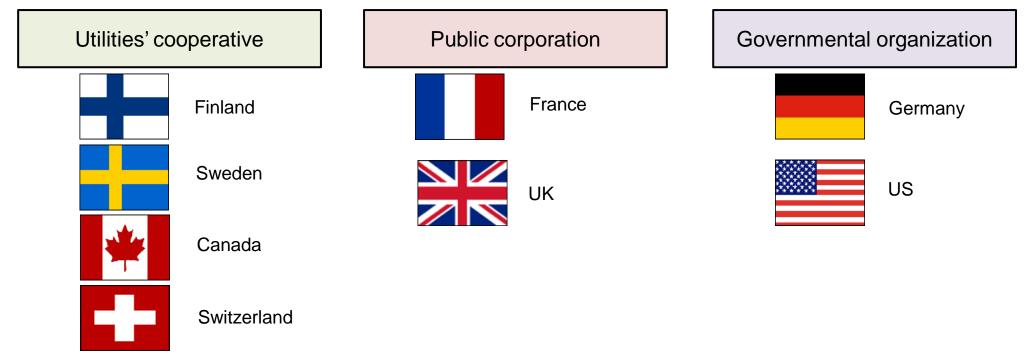
OECD/NEA report (1977)

- For long-lived wastes the objective of radioactive waste management is <u>to ensure</u> <u>the required degree of isolation from man</u> <u>over a time scale which precludes completely</u> <u>any form of reliance on long-term</u> <u>surveillance</u>.
- Potential disposal solutions (options) include: geological disposal, geological formations under the ocean floor, disposal on the ocean floor, disposal in glaciated areas, extraterrestrial disposal and destruction by nuclear transmission. Among them, <u>containment in</u> <u>stable geological formations on land</u> (geological disposal) is at present the most <u>advanced</u>.
- Administration, enhanced R&D and demonstration experiments should concentrate on the most suitable waste management technology and disposal method. <u>Geological disposal is the first candidate</u> both in one country and international level.

Council Directive of EU for the radioactive waste management (2011)

- The reprocessing or direct disposal of spent fuel, whatever option is chosen, the geological disposal of high-level waste should be considered.
- Storage is a step for management, and <u>disposal is the end point of the</u> <u>management</u>. <u>The storage of HLW</u> <u>requires human involvement is an</u> <u>interim solution</u>.
- It is broadly accepted at the technical level that, at this time, <u>geological</u> <u>disposal</u> represents <u>the safest option</u>. Member States of EU shall prepare a plan toward geological disposal by 2015.

3. Scheme of Implementing Geological Disposal

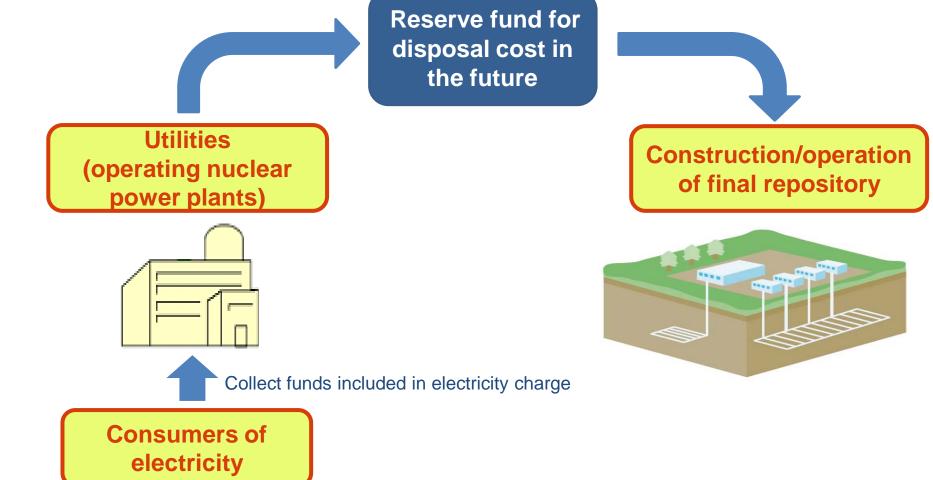


- Establish specific organization (implementer) to carry out geological disposal responsibly
- Independent regulator conducts safety review
- Waste producer should pay for fund to cover future cost (people making use of nuclear power should cover the cost)
- Implementer carries out dedicated geological investigation in staged manner
- Municipalities make decisions whether they proceed to the next stage considering the opinions of local residents

(1) Implementation scheme

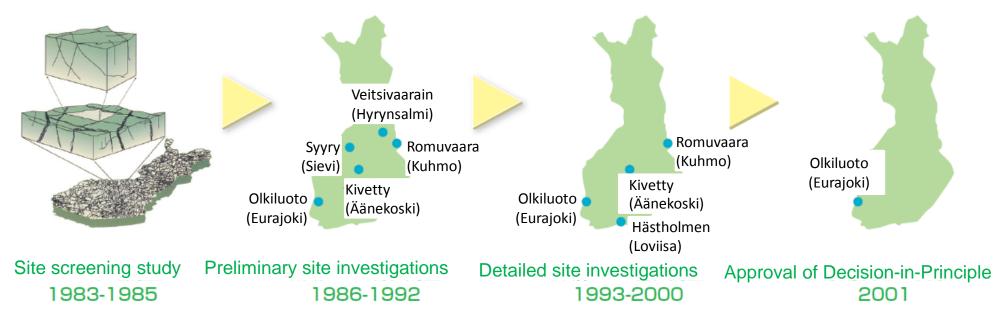
Specific organization (implementer) for final disposal project is established under the law.

—Implementer is responsible for long-term project including site selection (investigation), construction/operation/post-closure management for a certain period of repository.



Safety of the project is secured by the reviews/approvals of independent regulator.

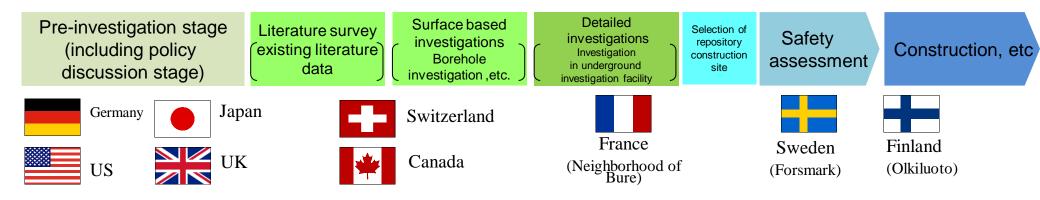
-Regulator rigorously reviews and judges whether implementer is qualified to secure long-term safety of repository.


② Funding for final disposal

- Users of nuclear power should cover the cost required in the future.
- Specifically, utilities which operate nuclear power plants reserve fund according to the amount of the waste produced and such fund will be used for disposal in the future.

③ Staged site selection

- Implementer of final disposal project carries out dedicated investigations in step-wise manner in order to check if suitable geological condition exists, or if engineering measures could overcome the issues.
- Municipalities make decisions whether they proceed to the next stage considering the opinions of local residents.

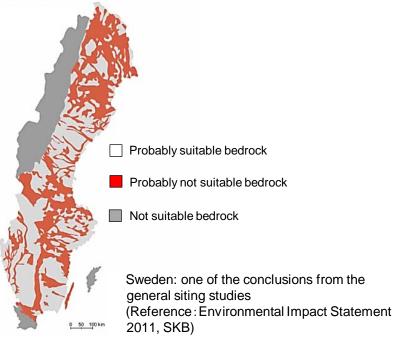


[Siting process in Finland]

Reference : "HLW Disposal in Other Countries" (2015)

4. Each Country is Making Efforts over Long-Time Period

- Each country has made long-time efforts for R&D and site selection since around 1970s. However it hasn't always gone smoothly and each country tackles with various difficulties.
- For example, US, Germany and UK once decided candidate sites or investigation areas, however, such decisions were turned down later and policies and approaches are under reconsideration.
- On the other hand, in Sweden and France experienced oppositions from local residents in siting areas, there have been progress in site selection. In Finland, the Finnish government granted a construction licence for a spent nuclear fuel disposal facility.



5. Lessons from Advanced Countries ①

Trust for safety

Staged investigation focusing on safety

In Sweden, SKB (implementer) provides discussion materials for the public/municipalities, including the implementation of nationwide/prefectural literature surveys showing suitable areas with a map, etc. and implements staged site investigation for a repository focusing on safety.


\diamondsuit Active involvement of regulator

In Finland, a opinion survey was conducted to local residents in candidate repository sites, which estimates the opinion of local residents for the acceptance of a repository, including their concerns and attitudes for risks. The results showed they have high trust for the regulator.

<Opinion survey of local residents>

Question:

"In the event that the investigations and safety assessment by the authorities indicated your own residential community to be safe as a final disposal site for nuclear wastes, would you accept the placement of nuclear wastes produced in Finland within the confines of your home municipality?"

5. Lessons from Advanced Countries ②

Intensive dialogue

Staff of implementer hold face-to-face communication Establish venues for information exchange and discussion among local residents

[Sweden]

Photo courtesy of Östhammar Municipality

 Establish organizations discussing effects in the local community in various aspects to make decisions voluntarily. They became venues for information exchange and discussion. [Finland]

Photo courtesy of Posiva Oy

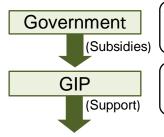
The Implementer (Posiva Oy) proactively carries out various local communication activities in which local residents can participate and discuss. [France]

Photo courtesy of Bure CLIS

• CLIS (Local committee for information and follow-up) is established near underground laboratory with its objectives of information provision and discussion under the law.

5. Lessons from Advanced Countries ③

Compensation


Acceptance area: partner of long-term project management over 100 years

 \heartsuit Importance of project implementation and local support for job creation and well-being

Groupement d'intérêt public (GIP) [France]

•Under the law, GIP is formed in départements where underground laboratory or a future geological repository is located for economical development in the area.

 Today, GIP is established in two départements: Meuse and Haute-Marne where the Bure Underground Research Laboratory is located. Subsidies of about 8 billion yen per year for two départements are used for various needs.

• Economic development, job creation • Infrastructure development (road, etc.) • Tourism promotion, etc.

Funding through solidarity/technology dissemination tax on nuclear-related facilities

Participation of government, affected municipalities, economic organization, ANDRA (implementer), etc.

Agreement on added value project among implementer and municipalities [Sweden]

 In March, 2009, an agreement on added value project for local development was concluded between 4 parties: two municipalities (Oskarshamn and Östhammar) as final candidate sites for a repository, SKB (implementer) and utilities.

<Contents of the agreement >

· Utilities and SKB support two municipalities

• Implement the added value project which creates economic impact totaling about 30 billion yen by 2025

(Main investment areas)

·Business development, supporting local companies

· Infrastructure development (improvement of road and port, etc.)

• Enlargement and diversification of the labor markets

Transferring SKB's headquarter function, laboratory expansion, etc.

Example of local development by GIP

Direction to aim for

Trust for safety

Intensive dialogue

Compensation

- Site selection to put highest priority in ensuring safety
- → Showing scientifically suitable areas is the first step
- Continuation of R&D, technology enhancement
- Active involvement of regulator

- Sustain attitudes to respect local opinions
- Listen and respond sincerely to concerns, anxieties and needs of local residents
- → Establish dialogue scheme with local residents

- Efforts of NUMO to be accepted as a member of local community
- Project implementation and comprehensive supports for socioeconomic impact for local community

Trust for administration of nuclear power, implementer and related parties