"The NUMO Pre-siting SDM-based Safety Case" - List of errata -

Corrected on July 2, 2025

English version

Chapter	Page	Position (Line, etc.)	Before correction	After correction
4	4-30	Figure 4.4-2	See "List of errata about Figure 4.4-2 in Chapter 4" below	See "List of errata about Figure 4.4-2 in Chapter 4" below
4	4-43	The 10 th line from the top	Kunigel <u>IV</u>	Kunigel <u>V1</u>
4	4-107	Figure 4.5-23	See "List of errata about Figure 4.5-23 in Chapter 4" below	See "List of errata about Figure 4.5-23 in Chapter 4" below
4	4-108	Table 4.5-20	See "List of errata about Table 4.5-20 in Chapter 4" below	See "List of errata about Table 4.5-20 in Chapter 4" below
6	6-14	Table 6.1-5	See "List of errata about Table 6.1-5 in Chapter 6" below	See "List of errata about Table 6.1-5 in Chapter 6" below
6	6-125	Figure 6.4-20	Figures for RN migration and radiation exposure processes are available, but only the latter is incuded.	Added Figure of RN migration process

"The NUMO Pre-siting SDM-based Safety Case" - List of errata -

July 2, 2025

List of errata about Figure 4.4-2 in Chapter 4

Before correction

Figure 4.4-2 Setting overpack thickness

After correction

Figure 4.4-2 Setting overpack thickness

Figure 4.5-23 Conceptual sketch of tunnel layout (HLW DET panels)

After correction

Figure 4.5-23 Conceptual sketch of tunnel layout (HLW DET panels)

List of errata about Figure 4.5-23 in Chapter 4

List of errata about Table 4.5-20 in Chapter 4 (Corrections are in red.)

Before correction

No.	Name	Function	Ventilation role
Ramp	Ramp	Transport of overpack and buffer or PEM	Air intake
Shaft No. 1	Ramp ventilation shaft	Ramp drainage	Exhaust (active)
Shaft No. 2	Materials transport shaft A	Construction, backfill materials, personnel and equipment	Air intake
Shaft No. 3	Spoil removal shaft A	Excavated spoil, drainage	Exhaust (active)
Shaft No. 4	Materials transport shaft B	Construction, backfill materials, personnel and equipment	Air intake
Shaft No. 5	Spoil removal shaft B	Excavated spoil, drainage	Exhaust (inactive)

Table 4.5-20 Access roles (H12V/PEM DET panels)

After correction

Table 4.5-20 Access roles (H12V/PEM DET panels)

No.	Name	Function	Ventilation role
Ramp	Ramp	Transport of overpack and buffer or PEM	Air intake
Shaft No. 1	Ramp ventilation shaft	Ramp drainage	Exhaust (active)
Shaft No. 2	Materials transport shaft A	Construction, personnel and equipment	Air intake
Shaft No. 3	Spoil removal shaft A	Excavated spoil, backfill materials and drainage	Exhaust (active)
Shaft No.4 Materials transport shaft B		Construction, personnel and equipment	Air intake
Shaft No. 5	Spoil removal shaft B	Excavated spoil, backfill materials and drainage	Exhaust (inactive)

Before correction

Nuclide	Half-life (y)	Nuclide	Half-life (y)
C-14	5.7x10 ³	Pa-233	7.4x10 ⁻²
Cl-36	3.0x10 ⁵	U-232	6.9x10
Co-60	5.3	U-233	1.6x10 ⁵
Ni-59	1.0x10 ⁵	U-234	2.5x10 ⁵
Ni-63	1.0×10^2	U-235	7.0x10 ⁸
Se-79	3.0x10 ⁵	U-236	2.3x10 ⁷
Sr-90	2.9x10	U-238	4.5x10 ⁹
Zr-93	1.5x10 ⁶	Np-236	1.5x10 ⁵
Nb-93m	1.6x10	Np-237	2.1x10 ⁶
Nb-94	2.0x10 ⁴	Pu-236	2.9
Mo-93	4.0×10^3	Pu-238	8.8x10
Тс-99	2.1x10 ⁵	Pu-239	2.4x10 ⁴
Pd-107	6.5x10 ⁶	Pu-240	6.6x10 ³
Sn-126	2.3x10 ⁵	Pu-241	1.4x10
I-129	1.6x10 ⁷	Pu-242	3.8x10 ⁵
Cs-135	2.3x10 ⁶	Pu-244	8.0x10 ⁷
Cs-137	3.0x10	Am-241	4.3x10 ²
Pb-210	2.2x10	Am-242m	1.4x10 ²
Po-210	3.8x10 ⁻¹	Am-243	7.4x10 ³
Ra-226	1.6x10 ³	Cm-242	4.5x10 ⁻¹
Ra-228	5.8	Cm-243	2.9x10
Ac-227	2.2x10	Cm-244	1.8x10
Th-228	1.9	Cm-245	8.5x10 ³
Th-229	7.3x10 ³	Cm-246	4.8x10 ³
Th-230	7.5x10 ⁴	Cm-247	1.6x10 ⁷
Th-232	1.4×10^{10}	Cm-248	3.5x10 ⁵
Pa-231	3.3x10 ⁴		

Table 6.1-5 Selected radionuclides for biosphere assessment

After correction

Table 6.1-5 Selected radionuclides for biosphere assessment

Half-life (y) 7.4x10⁻² 6.9x10 1.6x10⁵ 2.5×10^{5} 7.0x10⁸ 2.3x10⁷ 4.5x10⁹ 1.5x10⁵ 2.1x10⁶ 2.9 8.8x10 2.4x10⁴ 6.6x10³ 1.4x10 3.8x10⁵ 8.0x10⁷ $4.3x10^{2}$ $1.4x10^{2}$ $7.4x10^{3}$ 2.9x10 1.8x10 8.5x10³ 4.8×10^{3} 1.6x10⁷ 3.5x10⁵

Nuclide	Half-life (y)	Nuclide
C-14	5.7x10 ³	Pa-233
Cl-36	3.0x10 ⁵	U-232
Co-60	5.3	U-233
Ni-59	1.0x10 ⁵	U-234
Ni-63	1.0x10 ²	U-235
Se-79	3.0x10 ⁵	U-236
Sr-90	2.9x10	U-238
Zr-93	1.5x10 ⁶	Np-236
Nb-93m	1.6x10	Np-237
Nb-94	2.0x10 ⁴	Pu-236
Mo-93	4.0x10 ³	Pu-238
Tc-99	2.1x10 ⁵	Pu-239
Pd-107	6.5x10 ⁶	Pu-240
Sn-126	2.3x10 ⁵	Pu-241
I-129	1.6x10 ⁷	Pu-242
Cs-135	2.3x10 ⁶	Pu-244
Cs-137	3.0x10	Am-241
Pb-210	2.2x10	Am-242m
Po-210	3.8x10 ⁻¹	Am-243
Ra-226	1.6x10 ³	Cm-243
Ra-228	5.8	Cm-244
Ac-227	2.2x10	Cm-245
Th-228	1.9	Cm-246
Th-229	7.3x10 ³	Cm-247
Th-230	7.5x10 ⁴	Cm-248
Th-232	1.4x10 ¹⁰	
Pa-231	3.3x10 ⁴	

Before correction

Figure 6.4-20 Example of RN migration and radiation exposure processes in the biosphere (River water GBI, temperate climate, farmer exposure group)

After correction

Figure 6.4-20 Example of RN migration and radiation exposure processes in the biosphere (River water GBI, temperate climate, farmer exposure group)

"The NUMO Pre-siting SDM-based Safety Case" - List of errata -

Corrected on July 21, 2023

English version

Chapter	Page	Position (Line, etc.)	Before correction	After correction
3	3-7	The 3 rd line from the top	(1) Characteristics of a suitable geological environment	(1) Features of geological environments in Japan
3	3-48	Figure 3.3-7	Complex <u>Extent</u>	Complex Matrix composition
3	3-58	Legend of Figure 3.3-19	Hydraulic head (m)	Darcy flux (m/s)
3	3-60	Legend of Figure 3.3-21	The colors of the legend do not correspond to those of the plots.	Corrected the colors of the legend so they correspond to those of the plots.
3	3-83	Table 3.3-16	The description of Pre-Neogene and Neogene is opposite.	The center is Neogene and on the right is Pre-Neogene.
4	4-22	The 12 th line from the bottom	Grs. <u>1</u> and 4L have no buffer.	Grs. <u>3</u> and 4L have no buffer.
4	4-22	The 10 th line from the bottom	Bullet points are not indented.	Indented bullet points correctly.
4	4-23	The 10 th line from the top	Bullet points are not indented.	Indented bullet points correctly.
4	4-23	The 12 th line from the top	Bullet points are not indented.	Indented bullet points correctly.
6	6-72	The 6^{th} line from the bottom	Table 6.3- <u>11</u>	Table 6.3- <u>10</u>
6	6-100	The 13 th line from the bottom	for plutonic rocks and <u>Neogene</u> sediments	for plutonic rocks and Pre-Neogene sediments
6	6-102	The 13 th to 14 th lines from the bottom	plutonic rocks and <u>Neogene</u> sediments; for <u>Pre-Neogene</u> sediments	plutonic rocks and <u>Pre-Neogene</u> sediments; for <u>Neogene</u> sediments
6	6-103	The 8 th line from the top (From the 8 th to 9 th lines from the top after correction)	(plutonic rocks and <u>Neogene</u> sediments)	(plutonic rocks and <u>Pre-Neogene</u> sediments)
6	6-112	The 8 th line from the top	Cs, Sr <u>and Ra</u>	Cs, Sr, <u>Ra and Pb</u>
6	6-112	The 9 th line from the top	Co, Ni, <u>Pd and Pb</u>	Co, Ni <u>and Pd</u>
6	6-130	Figure 6.4-22 (Figures at the upper right and the lower left)	Estimated dose	Dose limit
6	6-135	The 13 th line from the bottom (From the 12 th to 13 th lines from the bottom after correction)	<u>Neogene</u> sediments	Pre-Neogene sediments
6	6-140	Figure 6.4-26	Estimated dose	Dose limit
6	6-142	Figure 6.4-27	Dose limit for variant scenarios: 300 µSv/y	Dose from natural radiation in Japan: 2,100 µSv/y
6	6-142	Figure 6.4-27	Dose limit for base scenario: 10 µSv/y	Dose limit for variant scenarios: 300 µSv/y

6	6-144	Figure 6.4-28	Dose limit for variant scenarios: $300 \ \mu Sv/y$	Dose from natural radiation in Japan: 2,100 $\mu Sv/y$
6	6-144	Figure 6.4-28	Dose limit for base scenario: 10 µSv/y	Dose limit for variant scenarios: 300 µSv/y
6	6-146	Figure 6.4-29	Dose limit for variant scenarios: 300 µSv/y	Dose from natural radiation in Japan: 2,100 µSv/y
6	6-146	Figure 6.4-29	Dose limit for base scenario: 10 µSv/y	Dose limit for variant scenarios: 300 µSv/y
6	6-147	Figure 6.4-30	Estimated dose	Dose limit
6	6-147	Figure 6.4-30 (Figure at the upper right)	TRU(waste package <u>B</u>)	TRU(waste package <u>A</u>)
6	6-148	Figure 6.4-31	Dose limit for variant scenarios: 300 µSv/y	Dose from natural radiation in Japan: 2,100 µSv/y
6	6-148	Figure 6.4-31	Dose limit for base scenario: 10 µSv/y	Dose limit for variant scenarios: 300 µSv/y
7	7-16	The 13 th line from the bottom	the boundary of the site <u>during</u> was significantly lower	the boundary of the site was significantly lower
7	7-18	Figure 7.2-3	Maximum dose (<u>m</u> Sv/y)	Maximum dose (<u>µ</u> Sv/y)
7	7-19	Figure 7.2-4	Maximum dose (<u>m</u> Sv/y)	Maximum dose (<u>µ</u> Sv/y)