「包括的技術報告書」 誤記等 修正対応表

2025年7月17日 修正箇所

付属書

### (刊馬音			
18(202年マブリコン)			修正前	修正後
	6-8		(深成岩類および新第三紀堆積岩類)	(深成岩類および <u>先</u> 新第三紀堆積岩類)
6-3	6-8	7(3)	本編4章	付属書4-28
SZSS SZZ S 4(元) (15 元) (2) 9 SZS SZZ S 4(元) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	6-8	7(4~5)		体とインバートはW/C=55%のコンクリートとし, TRU等廃
付属書の名 日次数 日本 日本 日本 日本 日本 日本 日本 日	6-8	8(表7キャプション)	TRU等廃棄物処分場	竪置き・ブロック方式およびグループ3
10(6)	6-8	53(表27(1/2)),54(表27(2/2)),	「付属書6-8 図表修正対応表」参照	「付属書6-8 図表修正対応表」参照
11(表12)	6-8	10(2)	付属書3-28	本編3章
11(表 2) S 7 日: Nax + H = Nax + HX 1.88 S 7 7 日: 前除	6-8	10(6)	溶解速度 <u>式</u>	溶解速度 <u>係数</u>
12(表13) 12(表14) 12(表14) 13(2-4)式 13(2-4)式 13(2-4)式 13(2-4)式 13(2-4)式 13(2-4)式 13(2-6)式	6-8	11(表12)		
13(2-4)式 Depomite Depomit	6-8	11(7),12(2)	JAEA (2015)	JAEA (2015a) , JAEA (2015b) , JAEA (2017)
13(2-4)式)	6-8	12(表13)	<u>. C3ASH4</u>	削除
13(5)	6-8	12(表14)	Do <u>r</u> omite	Do <u>l</u> omite
13(2-6)式	6-8	13((2-4)式)	$m=\exp{\{4.75 \cdot \log(T)-0.27 \cdot pH-13.39\}}$	$m = log \{4.75 \cdot log(T) - 0.27 \cdot pH - 13.39\}$
13(12-6)式)	6-8	13(5)	<u>(2-5)</u> 式を用いる	<u>(2-2)</u> 式を用いる
13(10)	6-8	13((2-6)式)		
14(8)	6-8	13(10)	$[mol m^{-2} s^{-1}]$, e_a は酸性領域でのみかけの活性化エネルギー	
15(表18),54(3)	6-8	14(表17)	<u>7.20</u> ×10 ⁻¹⁵	<u>8.22</u> ×10 ⁻¹⁵
18	6-8	14(8)	<u>(2-9)</u> 式	_(2-5)_式
Kaolininite:10	6-8	15(表18),54(3)	(JAEA, 2015)	(JAEA, 2015 <u>b</u>)
6-8 17(表21),58(表30) 深成岩類 6-8 36(2) 図 21 図 22 6-8 39(表23) (2-5) 式 (2-4) 式	6-8	16(表20)	Kaolininite:10 Montomorillonite:記載なし Clinoptololite:10 Monocarbonate:記載なし	Kaolininite:削除 Montomorillonite:8.5 Clinoptololite:削除 Monocarbonate:10
6-8 39(表23) (2-5) 式 (2-4) 式	6-8	17(表21),58(表30)		
	6-8	36(2)	⊠ 2 <u>1</u>	⊠ 2 <u>2</u>
6-8 39(12), 40(図24) <u>10万</u> 年 <u>1万5千</u> 年	6-8	39(表23)		
	6-8	39(12), 40(⊠24)		<u>1万5千</u> 年

6-8	103(7), 104(図70)	<u>10万</u> 年	<u>5万6千</u> 年
6-8	109(7,8)	<u>10万</u> 年	<u>9万8千</u> 年
6-8	46(⊠28),85(⊠53),86(⊠55)	横置き・PEM方式の埋め戻し材の色と 竪置き・ブロック方式の埋め戻し材の色が混在	横置さ・PEM方式の埋め戻し材の色をピンクに修正 竪置き・ブロック方式の埋め戻し材の色をオレンジに修正
6-8	51(表26)	Ca-beidellite	Beidellite (Ca-, Mg-)
6-8	51(1)	石英平衡 <u>程度</u> を想定した鉱物と,	石英平衡を想定した鉱物と,
6-8	56(10,12)	$2.3 \times 10^{-9} \mathrm{m}^2/\mathrm{s}$	$2.27 \times 10^{-9} \mathrm{m}^2/\mathrm{s}$
6-8	77(13)	水酸化鉄	水酸化鉄 <u>(II)</u>
6-8	89(表39)	間隙率: 67.9 合計: 32.1	間瞭率:32.1 合計:100
6-8	130(5)	アー <u>キ</u> ーの法則	アー <u>チ</u> ーの法則
6-8	130(9),143(13,22)	JAEA (2015)	JAEA (2015 <u>a</u>)
6-8	142(図91キャプション)	透水量 <u>条件</u> ケース	透水量 <u>上限</u> ケース
6-8	150(7)	<u>表 52</u> に示す。	<u>図 95</u> に示す。
6-8	160(4)	算出した。	算出した <u>(図103)</u> 。
6-8	174(7)	<u>三</u> 次元の物質輸送解析	<u>二</u> 次元の物質輸送解析
6-8	268(15)	JAEA (日本原子力研究開発機構) (2015): 平成26年度地層処分技術調査等事業 セメント材料影響評価技術高度化開発 -4カ年研究成果の取りまとめ	JAEA (日本原子力研究開発機構) (2015 <u>a</u>): 平成26年度地層処分技術調査等事業 セメント材料影響評価技術高度化開発 -4カ年研究成果の取りまとめ
6-8	268(17)	記載なし	JAEA(日本原子力研究開発機構)(2015b): 平成26年度地層処分技術調査等事業 セメント材料影響評価技術高度化開発報告書.
6-8	270(28)	Rimstidt, J. D. and Barnes, H. L. (1981) : The kinetics of silica-water reactions. Geochimica et Cosmochimica Acta, Vol. 44, pp. 1683-1699.	削除
6-8	271(28)	Widdrat, M. (2014): Formation and alteration of magnetite nanoparticles, Max Planck Institut, Potsdam, Germany.	削除

付属書 6-8 図表修正対応表 (赤字が修正箇所)

(1) 表 8 の修正

修正前 (誤) 修正した箇所の抜粋

表 8 セメント系材料仕様

	W/C [%]	単位セメント量 [kg/m³]	単位水量 [kg/m³]	細・粗骨材量 [kg/m³]
コンクリート	45	367	165	1820

修正後(正)

表 8 セメント系材料仕様

	W/C [%]	単位セメント量 [kg/m³]	単位水量 [kg/m³]	骨材量 [kg/m³]
吹付けコンクリート	45	367	165	1820
コンクリート	55	300	165	1877

(2) 表 15 の修正

修正前(誤)

表 15 (2-5)式を用いる場合の溶解速度式中の定数(ガラスー鉄ーベントナイト系)

	k_n	k_b	e_n	e_b	n	m
	[mol m ⁻² s ⁻¹]	[mol m ⁻² s ⁻¹]	[kJ mol ⁻¹]	[kJ mol ⁻¹]		
Albite	3.98×10 ⁻¹³	5.25×10 ⁻¹⁷	56.6	34.8	-0.5	(2-4) 式
Anorthite	3.98×10^{-13}	5.25×10^{-17}	56.6	34.8	-0.5	(2-4) 式
Illite	10 ^{-15.05}	10 ^{-12.31}	14	67	0.6	(2-4) 式
Analcime-I	_	3.91*10 ⁻¹²	_	77.1	0	1
Chalcedony	_	10 ^{-14.51}	_	108.4	-0.52	1

表 15 (2-2)式を用いる場合の溶解速度式中の定数(ガラスー鉄ーベントナイト系)

	k_n	k_b	e_n	e_b	n	m	p
	[mol/m ² s]	[mol/m ² s]	[kJ/mol]	[kJ <mark>/</mark> mol]			
Illite	2.82×10^{-14}	2.82×10^{-15}	22	22	-0.22	(2-4) 式	3
Analcime	_	3.91×10 ⁻¹²	_	77.1	0	1	1
Chalcedony	_	10-14.51	_	108.4	-0.52	1	1
Brucite	10 ^{-8.24}	_	42.0	_	0	1	1
Sepiolite	10 ^{-8.24}	_	42.0	_	0	1	1
Hydrotalcite	10 ^{-8.24}	_	42.0	_	0	1	1
Gypsum	10-2.79	_	0	_	_	_	_

(3) 表 16 の修正

修正前(誤)修正した箇所の抜粋

表 16 炭酸を含む鉱物の溶解速度式中の定数

	k_a	k_n	k_b	e_a	e_n	e_b	l	n	m	p
	[mol m ⁻² s ⁻¹]	[mol m ⁻² s ⁻¹]	[mol m ⁻² s ⁻¹]	[kJ mol ⁻¹]	[kJ mol ⁻¹]	[kJ mol ⁻¹]				
Dolomite	10-3.19	10 ^{-7.53}	10-5.11	36.1	52.2	34.8	0.5	0.5	1	1

修正後 (正)

表 16 炭酸を含む鉱物の溶解速度式中の定数

	k_a	k_n	k_b	e_n	e_b	l	n	m	p
	[mol/m ² s]	[mol/m ² s]	[mol/m ² s]	[kJ <mark>/</mark> mol]	[kJ <mark>/</mark> mol]				
Dolomite	10-3.19	10-7.53	10-5.11	52.2	34.8	1	0.5	1	1

(4) 表 19の修正

修正前(誤)

表 19 (2-9)式を用いる場合の溶解速度式中の定数

	logk	根拠
Portlandite	-6	C-S-H よりも溶解が早いため
Ettringite	-8.5	C-S-H と同じ
Monosulfate	-8.5	Ettringite と同じ
Phillipsite	-11.41	Laumontite と同じ
Clinoptilolite	-11.41	Laumontite と同じ
Heulandite	-11.41	Laumontite と同じ
C3AH13	-8.5	C-S-H と同じ
C4AH13	-8.5	C-S-H と同じ
C4AH19	-8.5	C-S-H と同じ
Katoite-Al	-8.5	C-S-H と同じ
Katoite-AlSi080	-8.5	C-S-H と同じ
Stratlingite	-8.5	C-S-H と同じ
Friedel_Salt	-8.5	Ettringite と同じ

表 19 (2-9)式を用いる場合の溶解速度式中の定数

	logk	根拠
Portlandite	-6	C-S-H よりも溶解が早いため
Ettringite	-10.94	C-S-H と同じ
Monosulfate	-10.94	Ettringite と同じ
Phillipsite	-11.41	25℃におけるゼオライトの沈殿速度式
Heulandite	-11.41	25℃におけるゼオライトの沈殿速度式
C4AH13	-10.94	C-S-H と同じ
C4AH19	-10.94	C-S-H と同じ
Katoite-Al	-10.94	C-S-H と同じ
Katoite-AlSi080	-10.94	C-S-H と同じ
Stratlingite	-10.94	C-S-H と同じ
Friedel_Salt	-10.94	Ettringite と同じ

(5) 表 27 (1/2) の修正

修正前(誤)修正した箇所の抜粋

表 27 鉱物の溶解速度式の設定 (1/2)

	参照する鉱物	出展	$\text{Log } k_+ 25 ^{\circ}\text{C [mol/m}^2 \text{s]}$
ゼオライト類			
Analcime			
Mordenite	Analcime,	Wilkin and	$rate = k(1 - \frac{Q}{v}), \log k = -14.5$
Scolecite	NaAlSi ₂ O ₆ :H ₂ O	Barnes, 2000	rate = $k(1 - \frac{1}{K})$, $\log k = -14.5$
Stilbite			
二酸化ケイ素			
Quartz	Silica,	Rimstidt and	$rate = k(1 - \frac{Q}{v}), \log k = -9.4$
Chalcedony	SiO ₂	Barnes, 1981	$rate = \kappa(1 - \frac{1}{K}), \log \kappa = -9.4$

修正後(正)

表 27 鉱物の溶解速度式の設定 (1/2)

	参照する鉱物	出展	$\text{Log } k_+ 25 ^{\circ}\text{C [mol/m}^2 \text{s]}$
ゼオライト類			
Analcime			
Natrolite	Analcime, NaAlSi ₂ O ₆ :H ₂ O	Wilkin and	
Mordenite			rate = $k(1 - \frac{Q}{K})$, log $k = -14.5$
Scolecite		Barnes, 2000	
Stilbite			
二酸化ケイ素			
Quartz			rate= $\left[k_{a} \cdot \exp\left\{\frac{-e_{a}}{R}\left(\frac{1}{T} - \frac{1}{T_{o}}\right)\right\} \cdot a_{H+}^{0.3} + (1-S) \cdot k_{b} \cdot \exp\left\{\frac{-e_{b}}{R}\left(\frac{1}{T} - \frac{1}{T_{o}}\right)\right\}\right]$
	Silica,		$\begin{bmatrix} \mathbf{R}_{a} & \mathbf{E} \mathbf{A} \mathbf{P} & \mathbf{R} & \mathbf{T} & \mathbf{T}_{0} \end{bmatrix} \end{bmatrix} \overset{\mathbf{H}_{1}}{\mathbf{H}_{1}} \overset{\mathbf{H}_{2}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{3}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{4}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{3}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{3}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{4}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{3}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{4}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{3}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{4}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{3}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{4}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{3}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{4}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{3}}{\mathbf{H}_{3}} \overset{\mathbf{H}_{4}}{\mathbf{H}_{3}} \overset{\mathbf{H}_$
Chalcedony	SiO ₂	JAEA, 2015b	$\left(\frac{1}{T_0}\right) \cdot a_{H^+}^{-0.3} \cdot \left[1 - \exp\left(\frac{\Delta G_r}{RT}\right)\right]$
			(パラメータの定義および値は2.3.3 参照)

(6) 表 27 (2/2) の修正

修正前(誤)

表 27 鉱物の溶解速度式の設定(2/2)

参照する鉱物	出展	$\text{Log } k_+ 25 ^{\circ}\text{C [mol/m}^2 \text{s]}$
Coloito CoCO	Wolthers	$R_{\rm pot} = I^{-0.004} \text{pH}^{-10.71} r_{aa}^{-0.35} (\sqrt{\Omega} - 1)^2$
Calcile, CaCO ₃	et al., 2012	$R_{\rm ppt} = I^{\rm cool} pH^{\rm cool} r_{aq}^{\rm cool} (\sqrt{\Omega}-1)$
Dawsonite,	Hellevang	$R_{\text{ppt}} = -k_{+}A \exp\left(-\frac{E_{A}}{RT}\right) (\Omega - 1)^{2} - k_{N} \exp\left\{-\Gamma\left(\frac{1}{T^{3/2} \ln \Omega}\right)^{2}\right\}$
NaAlCO ₃ (OH) ₂	et al., 2011	$R_{\text{ppt}} = -R_{+}A \exp\left(-\frac{1}{RT}\right) (\Omega - 1)^{2} - R_{N} \exp\left(-\frac{1}{T^{3/2} \ln \Omega}\right)$
Dolomite,	Arvidson and	$R_{\text{pot}} = A e^{-(\frac{E_A}{RT})} (\Omega - 1)^n$
CaMg(CO ₃) ₂	Mackenzie, 1999	$R_{\rm ppt} = A e^{\gamma RT'} (Q-1)''$
	Jimenez-Lopez	
Siderite, FeCO ₃	and Romanek,	rate = $k(1 - \frac{Q}{K})$, log $k = -9.6$
	2004	
Magnetite,	Widdent 2014	1/1 8/1 / 240
Fe ₃ O ₄	widdrat, 2014	$rate = k(1 - \frac{Q}{K}), \log k = -24.9$
	Calcite, CaCO ₃ Dawsonite, NaAlCO ₃ (OH) ₂ Dolomite, CaMg(CO ₃) ₂ Siderite, FeCO ₃	Calcite, CaCO ₃ Wolthers et al., 2012 Dawsonite, NaAlCO ₃ (OH) ₂ Dolomite, CaMg(CO ₃) ₂ Mackenzie, 1999 Jimenez-Lopez and Romanek, 2004 Magnetite, Widdrat, 2014

修正後(正)

表 27 鉱物の溶解速度式の設定 (2/2)

	参照する鉱物	出展	Log k ₊ 25 °C [mol/m ² Os]
炭酸塩			
Calcite Dolomite	Calcite, CaCO ₃ Dolomite, CaMg(CO ₃) ₂	JAEA, 2015b	$ \begin{aligned} & \text{rate} = \left[k_{\text{n}} \cdot a_{\text{H+}} + k_{\text{n}} \cdot \exp\left\{ \frac{\cdot e_{\text{n}}}{R} \left(\frac{1}{T} - \frac{1}{T_0} \right) \right\} + k_{\text{b}} \cdot \exp\left\{ \frac{\cdot e_{\text{b}}}{R} \left(\frac{1}{T} - \frac{1}{T_0} \right) \right\} \cdot P_{\text{CO}_2} \right] \cdot \left[1 - \exp\left(\frac{\Delta G_r}{RT} \right) \right] \\ & (\text{パラメータの定義および値は 2.3.3 参照}) \end{aligned} $
Dawsonite	Dawsonite, NaAlCO ₃ (OH) ₂	Hellevang et al., 2011	$R_{\mathrm{ppt}} = -k_{+}A\mathrm{exp}\left(-\frac{E_{A}}{RT}\right)(\Omega-1)^{2}-k_{N}\mathrm{exp}\left\{-\Gamma\left(\frac{1}{T^{3/2}\mathrm{ln}\Omega}\right)^{2}\right\}$ 沈殿に関する速度定数 k_{p} =1.82×10 5 [mol/m 2 s],活性化エネルギー E_{A} =8.06×10 4 [J/mol],気体定数 R =8.31 [J/mol K],核生成に関する速度定数 k_{p} =1×10 8 [mol/s],核生成パラメータ Γ =5×10 9 [-]
Siderite	Siderite, FeCO ₃	Jimenez-Lopez and Romanek, 2004	$rate = k(1 - \frac{Q}{K}), \log k = -9.6$
酸化物			
Magnetite	Magnetite, Fe ₃ O ₄	JAEA, 2017	rate = $k_a \cdot a_H^{0.279} + k_b (\Omega - 1)$, $\log k_a = -8.59$, $\log k_b = -10.78$ 反応速度の pH 依存性に関する定数 $k_a = 2.57 \times 10^9 [\text{mol/m}^2 \text{s}]$ 反応速度定数 $k_b = 1.66 \times 10^{-11} [\text{mol/m}^2 \text{s}]$

(7) 表 28の修正

表 28 二次鉱物の比表面積

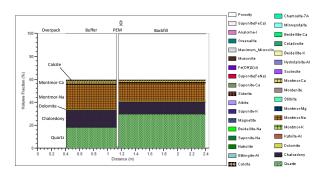
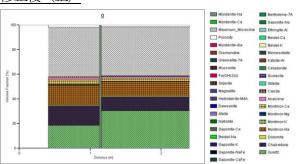
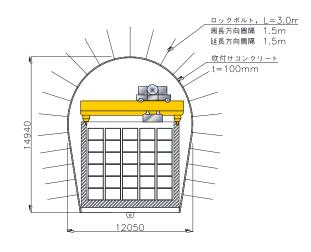

	12 20	
鉱物	比表面積 [m²/g]	根拠
Fe(OH) ₂	1.76	粒径1 μmを仮定した幾何学的計算(Wilson et al., 2015)
Magnetite	0.12	粒径10 μmを仮定した幾何学的計算(Wilson et al., 2015)
Siderite	0.16	粒径10 μmを仮定した幾何学的計算(Wilson et al., 2015)
Albite	10	-
Analcime	10	-
Beidellite	5.4	illiteと同じ比表面積と仮定
Berthierine	8.16	kaoliniteと同じ比表面積と仮定(Wilson et al., 2015)
Calcite	10	-
Celadonite	10	-
Chalcedony	0.23	JAEA, 2015
Dawsonite	10	-
Dolomite	10	-
Gismondine	10	-
Greenalite	8.16	Wilson et al., 2015
Maximum_Microcline	10	-
Minnesotaite	5.4	illiteと同じ比表面積と仮定(Wilson et al., 2015)
Mordenite	10	-
Muscovite	10	-
Natrolite	10	-
Pyrite	10	-
Quartz	0.1	粒径22 μmを仮定した幾何学的計算(JAEA, 2015)
Saponite	5.4	illiteと同じ比表面積と仮定(Wilson et al., 2015)
Scolecite	10	-
Stilbite	10	-

表 28 二次鉱物の比表面積

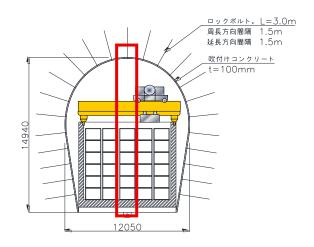

鉱物	比表面積 [m²/g]	根拠
Magnetite	0.12	粒径10 μmを仮定した幾何学的計算(Wilson et al., 2015)
Siderite	0.16	粒径10 μmを仮定した幾何学的計算(Wilson et al., 2015)
Albite	10	-
Analcime	10	-
Beidellite	5.4	illiteと同じ比表面積と仮定(<mark>JAEA, 2017</mark>)
Berthierine	8.16	Wilson et al., 2015
Calcite	0.22	粒径10 μmを仮定した幾何学的計算(Wilson et al., 2015)
Celadonite	10	-
Chalcedony	2.3	粒径1 μmを仮定した幾何学的計算(Wilson et al., 2015)
Dawsonite	10	-
Dolomite	0.21	粒径10 μmを仮定した幾何学的計算(Wilson et al., 2015)
Greenalite	8.16	Wilson et al., 2015
Hydrotalcite	11.94	JAEA, 2015b
Katoite	10	-
Maximum_Microcline	10	-
Minnesotaite	5.4	illiteと同じ比表面積と仮定(JAEA, 2017)
Montmorillonite	8.5	Marty et al., 2015
Mordenite	10	-
Muscovite	10	-
Natrolite	10	-
Quartz	0.1	粒径22 μmを仮定した幾何学的計算(JAEA, 2015b)
Saponite	5.4	Wilson et al., 2015
Scolecite	10	-
Stilbite	10	-

(8) 図 40の修正

修正前(誤)

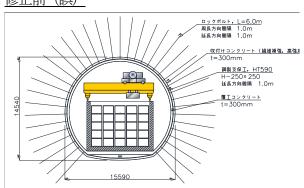


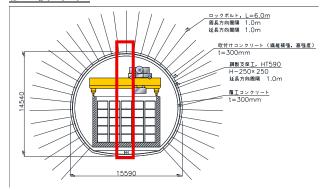
修正後(正)



(9) 図 58の修正

修正前(誤)




修正後 (正)

(10) 図 59の修正

修正前(誤)

「包括的技術報告書」 誤記等 修正対応表

2025年7月2日 修正箇所

本編

章	ページ	位置 (行など)	修正前	修正後
4	4-104	⊠ 4.5-23	後記の「第4章 図4.5-23の修正対応表」参照	後記の「第4章 図4.5-23の修正対応表」参照
4	4-105	表 4.5-20	後記の「第4章 表4.5-20の修正対応表」参照	後記の「第4章 表4.5-20の修正対応表」参照
6	6-15	表 6.1-5	後記の「第6章 表6.1-5の修正対応表」参照	後記の「第6章 表6.1-5の修正対応表」参照

付属書

付属書 番号	ページ	位置 (行など)	修正前	修正後
6-1	6	表 2	後記の「付属書6-1 表2修正対応表」参照	後記の「付属書6-1 表2修正対応表」参照
6-1	31	表 6	後記の「付属書6-1 表6修正対応表」参照	後記の「付属書6-1 表6修正対応表」参照
6-1	37	数式 (3-31)	後記の「付属書6-1 数式 (3-31) 修正対応表」 参照	後記の「付属書6-1 数式 (3-31) 修正対応表」 参照
6-1	38	表 9	後記の「付属書6-1 表9修正対応表」参照	後記の「付属書6-1 表9修正対応表」参照
6-1	付23~付24	付表 7	後記の「付属書6-1 付表7修正対応表」参照	後記の「付属書6-1 付表7修正対応表」参照
6-1	付25~付26	付表 8	後記の「付属書6-1 付表8修正対応表」参照	後記の「付属書6-1 付表8修正対応表」参照
6-1	付27~付28	付表 9	後記の「付属書6-1 付表9修正対応表」参照	後記の「付属書6-1 付表9修正対応表」参照
6-25	31	上から2~3行目 (修正後は図 22)	後記の「付属書6-25 修正対応表」参照	後記の「付属書6-25 修正対応表」参照
6-26	25	図 16 (修正後は上から2~3行目)	後記の「付属書6-26 修正対応表」参照	後記の「付属書6-26 修正対応表」参照
6-35	14	表 10	<u>P_d(</u> OH) ₂ ("P"と"d"の間に不要なスペースあり)	<u>Pd(</u> OH) ₂ ("P"と"d"の間のスペースを削除)
7-3	5	上から8行目	わかる。 <u>り、</u> 低CI-濃度地下水	わかる。低CI-濃度地下水

「包括的技術報告書」 誤記等 修正対応表

2025年7月2日

本編第4章 図4.5-23の修正対応表

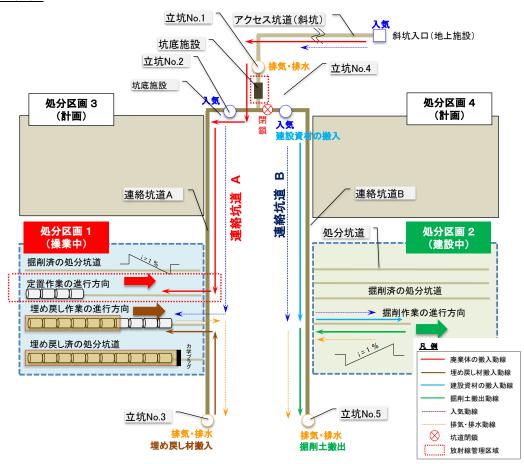


図 4.5-23 連絡坑道の配置概念図 (デッドエンド型処分区画)

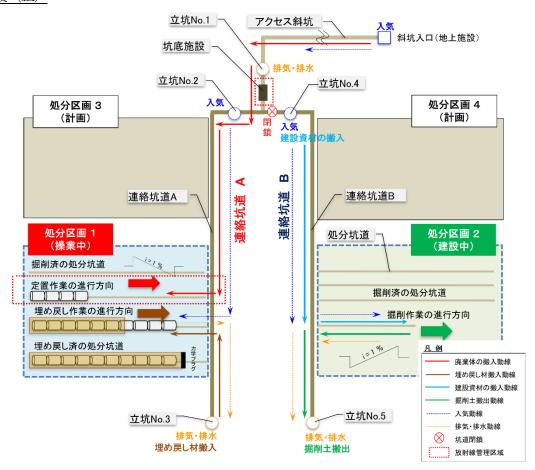


図 4.5-23 連絡坑道の配置概念図 (デッドエンド型処分区画)

本編第4章 表 4.5-20 の修正対応表(赤字が修正箇所)

修正前(誤)

表 4.5-20 アクセス坑道の役割 (デッドエンド型処分区画)

No.	名 称	作業にかかわる役割	換気上の役割
斜 坑	操業用斜坑	ガラス固化体を封入したオーバーパック、緩衝材あるいはPEMの搬送	入気
立坑 No.1	換気立坑	排水	排気
立坑 No.2	資機材搬入立坑 A	埋め戻し材・人員・資材搬入	入気
立坑 No.3	掘削土搬出専用立坑 A	掘削土の搬出・排水	排気
立坑 No.4	資機材搬入立坑 B	埋め戻し材・人員・資材搬入	入気
立坑 No.5	掘削土搬出専用立坑 B	掘削土の搬出・排水	排気

表 4.5-20 アクセス坑道の役割(デッドエンド型処分区画)

公 4.0 20				
No.	名 称	作業にかかわる役割	換気上の役割	
斜坑	操業用斜坑	ガラス固化体を封入したオーバーパック、緩衝材あるいはPEMの搬送	入気	
立坑 No.1	換気立坑	排水	排気	
立坑 No.2	資機材搬入立坑 A	人員・資材搬入	入気	
立坑 No.3	掘削土搬出専用立坑 A	掘削土搬出,埋め戻し材搬入,排水	排気	
立坑 No.4	資機材搬入立坑 B	人員・資材搬入	入気	
立坑 No.5	掘削土搬出専用立坑 B	掘削土搬出,埋め戻し材搬入,排水	排気	

本編第6章 表 6.1-5 の修正対応表(赤字が修正箇所)

表 6.1-5 生活圏評価において線量への換算係数を算出する対象核種と半減期

L+-C=-	1/.3 -11-1
核種	半減期 [y]
C-14	5.7×10 ³
Cl-36	3.0×10 ⁵
Co-60	5.3
Ni-59	1.0×10 ⁵
Ni-63	1.0×10^2
Se-79	3.0×10 ⁵
Sr-90	2.9×10
Zr-93	1.5×10 ⁶
Nb-93m	1.6×10
Nb-94	2.0×10 ⁴
Mo-93	4.0×10^{3}
Tc-99	2.1×10 ⁵
Pd-107	6.5×10 ⁶
Sn-126	2.3×10 ⁵
I-129	1.6×10 ⁷
Cs-135	2.3×10 ⁶
Cs-137	3.0×10
Pb-210	2.2×10
Po-210	3.8×10 ⁻¹
Ra-226	1.6×10 ³
Ra-228	5.8
Ac-227	2.2×10
Th-228	1.9
Th-229	7.3×10 ³
Th-230	7.5×10 ⁴
Th-232	1.4×10 ¹⁰
Pa-231	3.3×10 ⁴

核種	半減期 [y]
Pa-233	7.4×10 ⁻²
U-232	6.9×10
U-233	1.6×10 ⁵
U-234	2.5×10 ⁵
U-235	7.0×10^{8}
U-236	2.3×10 ⁷
U-238	4.5×10 ⁹
Np-236	1.5×10 ⁵
Np-237	2.1×10^{6}
Pu-236	2.9
Pu-238	8.8×10
Pu-239	2.4×10^4
Pu-240	6.6×10^3
Pu-241	1.4×10
Pu-242	3.8×10^{5}
Pu-244	8.0×10^{7}
Am-241	4.3×10^{2}
Am-242m	1.4×10^2
Am-243	7.4×10^3
Cm-242	4.5×10 ⁻¹
Cm-243	2.9×10
Cm-244	1.8×10
Cm-245	8.5×10^{3}
Cm-246	4.8×10^{3}
Cm-247	1.6×10 ⁷
Cm-248	3.5×10 ⁵

表 6.1-5 生活圏評価において線量への換算係数を算出する対象核種と半減期

核種	半減期 [y]
C-14	5.7×10 ³
Cl-36	3.0×10 ⁵
Co-60	5.3
Ni-59	1.0×10 ⁵
Ni-63	1.0×10^{2}
Se-79	3.0×10^{5}
Sr-90	2.9×10
Zr-93	1.5×10^6
Nb-93m	1.6×10
Nb-94	2.0×10 ⁴
Mo-93	4.0×10^3
Tc-99	2.1×10 ⁵
Pd-107	6.5×10^6
Sn-126	2.3×10 ⁵
I-129	1.6×10 ⁷
Cs-135	2.3×10 ⁶
Cs-137	3.0×10
Pb-210	2.2×10
Po-210	3.8×10 ⁻¹
Ra-226	1.6×10^3
Ra-228	5.8
Ac-227	2.2×10
Th-228	1.9
Th-229	7.3×10^3
Th-230	7.5×10 ⁴
Th-232	1.4×10^{10}

核種	半減期 [y]
Pa-231	3.3×10 ⁴
Pa-233	7.4×10 ⁻²
U-232	6.9×10
U-233	1.6×10 ⁵
U-234	2.5×10 ⁵
U-235	7.0×10^{8}
U-236	2.3×10 ⁷
U-238	4.5×10 ⁹
Np-236	1.5×10 ⁵
Np-237	2.1×10 ⁶
Pu-236	2.9
Pu-238	8.8×10
Pu-239	2.4×10 ⁴
Pu-240	6.6×10^3
Pu-241	1.4×10
Pu-242	3.8×10 ⁵
Pu-244	8.0×10 ⁷
Am-241	4.3×10 ²
Am-242m	1.4×10^2
Am-243	7.4×10^3
Cm-243	2.9×10
Cm-244	1.8×10
Cm-245	8.5×10^3
Cm-246	4.8×10^{3}
Cm-247	1.6×10 ⁷
Cm-248	3.5×10 ⁵

修正前(誤)

表 2 生活圏評価で対象とした核種において線量への換算係数を算出する対象核種と半減期, および、親核種と放射平衡を仮定する子孫核種

マル	为在技徒	N 3-4 440	仕込圏のようでの担において朝林廷しせは東海とにウナフフな
系列	対象核種	半 減 期 [年]	生活圏のすべての場において親核種と放射平衡を仮定する子孫 核種
核分裂生成物	C-14	5.7×10^3	
放射化生成物	Cl-36	3.0×10^{5}	
755611111111111111111111111111111111111	Ni-59	1.0×10^5	
	Co-60	5.3×10 ⁰	
	Ni-63	1.0×10^{2}	
	Se-79	3.0×10 ⁵	
	Sr-90	2.9×10^{1}	
	Mo-93	4.0×10^3	
	Zr-93	1.5×10 ⁶	
	Nb-93m	1.6×10^{1}	
	Nb-94	2.0×10^4	
	Tc-99	2.1×10^5	
	Pd-107	6.5×10^6	
	Sn-126	2.3×10 ⁵	Sb-126m, Sb-126
	I-129	1.6×10^7	36 12011, 36 120
	Cs-135	2.3×10^6	
	Cs-137	3.0×10^{1}	
4N 系列	Ra-228	5.8×10^{0}	Ac-228
71.717.4	Th-228	1.9×10 ⁰	Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Po-212, Tl-208
	U-232	6.9×10^{1}	144 22 1,141 220,10 210,10 212, 31 212,10 212, 11 200
	Th-232	1.4×10^{10}	
	Np-236	1.5×10 ⁵	Pa-232
	Pu-236	2.9×10^{0}	1 4 202
	U-236	2.3×10^7	
	Pu-240	6.6×10^3	
	Pu-244	8.0×10^7	U-240, Np-240m, Np-240
	Cm-244	1.8×10 ¹	· · · · · · · · · · · · · · · · · ·
	Cm-248	3.5×10 ⁵	
4N+1 系列	Th-229	7.3×10^3	Ra-225, Ac-225, Fr-221, At-217, Bi-213, Po-213, Pb-209, Tl-209
	U-233	1.6×10^{5}	
	Pa-233	7.4×10 ⁻²	
	Np-237	2.1×10^{6}	
	Pu-241	1.4×10^{1}	U-237
	Am-241	4.3×10^2	
	Cm-245	8.5×10^3	
4N+2 系列	Pb-210	2.2×10^{1}	Bi-210, Hg-206, Tl-206
	Po-210	3.8×10 ⁻¹	
	Ra-226	1.6×10^3	Rn-222, Po-218, At-218, Rn-218, Pb-214, Bi-214, Po-214, Tl-210
	Th-230	7.5×10^4	
	U-234	2.5×10^{5}	
	U-238	4.5×10^9	Th-234, Pa-234m, Pa-234
	Pu-238	8.8×10 ¹	
	Pu-242	3.8×10^5	
	Am-242m	1.4×10^2	Am-242, Np-238
	Cm-242	4.5×10 ⁻¹	
Die Fri	Cm-246	4.8×10^3	WI 995 D 999 D 999 D 919
4N+3 系列	Ac-227	2.2×10^{1}	Th-227, Ra-223, Fr-223, Rn-219, At-219, Po-215, Bi-215, Pb-211, Bi-211, Po-211, Tl-207
	Pa-231	3.3×10 ⁴	
	U-235	7.0×10^{8}	Th-231
	Pu-239	2.4×10 ⁴	U-235m
	Am-243	7.4×10^3	Np-239
	Cm-243	2.9×10^{1}	
	Cm-247	1.6×10^7	Pu-243

表 2 生活圏評価で対象とした核種において線量への換算係数を算出する対象核種と半減期, および、親核種と放射平衡を仮定する子孫核種

エエリ		T > b	
系列	対象核種	半減期	生活圏のすべての場において親核種と放射平衡を仮定する子孫
11.0 70.0 5.0		[年]	核種
核分裂生成物	C-14	5.7×10 ³	
放射化生成物	Cl-36	3.0×10 ⁵	
	Ni-59	1.0×10 ⁵	
	Co-60	5.3×10 ⁰	
	Ni-63	1.0×10^2	
	Se-79	3.0×10^5	
	Sr-90 Mo-93	2.9×10^{1} 4.0×10^{3}	
	Zr-93	1.5×10 ⁶	
	Nb-93m	1.5×10 ¹	
	Nb-94	2.0×10 ⁴	
	Tc-99	2.0×10^{5} 2.1×10^{5}	
	Pd-107	6.5×10 ⁶	
	Sn-126	2.3×10 ⁵	Sb-126m, Sb-126
	I-129	1.6×10 ⁷	30-12011, 30-120
	Cs-135	2.3×10 ⁶	
	Cs-137	3.0×10^{1}	
4N 系列	Ra-228	5.8×10^{0}	Ac-228
12.77.07	Th-228	1.9×10 ⁰	Ra-224, Rn-220, Po-216, Pb-212, Bi-212, Po-212, Tl-208
	U-232	6.9×10 ¹	, , , , , , , , , , , , , , , , , , , ,
	Th-232	1.4×10^{10}	
	Np-236	1.5×10 ⁵	Pa-232
	Pu-236	2.9×10^{0}	
	U-236	2.3×10 ⁷	
	Pu-240	6.6×10^3	
	Pu-244	8.0×10^7	U-240, Np-240m, Np-240
	Cm-244	1.8×10 ¹	
	Cm-248	3.5×10^5	
4N+1 系列	Th-229	7.3×10 ³	Ra-225, Ac-225, Fr-221, At-217, Bi-213, Po-213, Pb-209, Tl-209
	U-233	1.6×10 ⁵	
	Pa-233	7.4×10 ⁻²	
	Np-237	2.1×10 ⁶ 1.4×10 ¹	U-237
	Pu-241 Am-241	4.3×10 ²	U-231
	Cm-245	8.5×10^3	
4N+2 系列	Pb-210	2.2×10 ¹	Bi-210, Hg-206, Tl-206
T1 (12)(7)	Po-210	3.8×10 ⁻¹	DF210, 11g-200, 11-200
	Ra-226	1.6×10 ³	Rn-222, Po-218, At-218, Rn-218, Pb-214, Bi-214, Po-214, Tl-210
	Th-230	7.5×10^4	
	U-234	2.5×10^5	
	U-238	4.5×10 ⁹	Th-234, Pa-234m, Pa-234
	Pu-238	8.8×10 ¹	,
	Pu-242	3.8×10^{5}	
	Am-242m	1.4×10^2	Am-242, Np-238
	Cm-246	4.8×10^{3}	
4N+3 系列	Ac-227	2.2×10 ¹	Th-227, Ra-223, Fr-223, Rn-219, At-219, Po-215, Bi-215, Pb-211, Bi-211, Po-211, Tl-207
	Pa-231	3.3×10 ⁴	
	U-235	7.0×10^{8}	Th-231
	Pu-239	2.4×10^4	U-235m
	Am-243	7.4×10^3	Np-239
	Cm-243	2.9×10 ¹	
l	Cm-247	1.6×10^7	Pu-243

表 6 生活圏評価に使用するデータセット(地形分類:平野部,気候区分:温暖帯,GBI:河川)(1/2)

深さ m	· - ·		工心固計画に使用	., , , , _				
国籍	バフメ				単位	TRU2*1の値	本報告書の値	設定根拠*2
##								
田東本 - -						表 '	7参照	
#報酬		体積	į		m^3			表 7 参照
突歩か手機 大き 大き 大き 大き 大き 大き 大き 大	コンパートメン	ノト 間隙	(率		-			_
次の意度	諸量	体積	含水率		-			_
次の報理		浮遊	物堆積量		kg/m ³	表 '	7 参照	_
コンパートメントの恋性 kg/m² 1.5×10² 2.4×10² 付換1.1 1.0		水の	密度					_
世の様子プロチント 西鉄産産 (Ap.)				度				_
保護の	コンパートメン			<u>~</u>		1.5×10 ⁴	2 4×10 ⁴	付録 1.1
特別大量 (Q ₀))	•			
)				
接触性	(C)NOV / /	1 100			•			
投資速度、(F _m)				E. (17.)	•			
接接 対行により連接 が 1				.重(V _{fsw})	•			
(V _{III})				Ct. L. v. IV. Ct. II. B	m/y	1×10-4	3×10 ⁻⁴	竹球 1.6
(Fig. 1) (Fig. 1				漬する堆積物量	m^3/v	1.6	1.6	_
同川における理検的の年間に改集 (S) my 1.6×10 ⁻⁵ 4×10 ⁻⁵ 付款 1.7 インドンド (M) 付款 1.8×10 ⁻⁵ インドンド (M) 付款 1.8 付款 1.8×10 ⁻⁵ インドンド (M) 付款 1.8 付表 1.9 付表 1.1 付表 1.9 付款 1.1 付表 1.9 付款 1.1 付表 1.9 付款 1.1 付表 1.0 付款 1.1 付表 1.0 付表 1.1 付款 1.1 付款 1.1 付表 1.0 付款 1.1				VIC = (-			
マンドロード種 (p)					•			
日産産産産産産産産産産産産産産産産産産産産産産産産産産産産産産産産産産産				年間沈殿量 (S_g)	•			
度 (Final) my - 5.6×10³ 行政 1.8 沿岸海域における堆積物の年間沈殿量(S _c) m/y 7.5×10⁵ 5.6×10³ 一 中間の正珠の沈殿量(S _c) m/y 5×10⁵ - - 内部設定くに対する姿勢職業等係数(D _{Don} , D _{con}) SVBq 付表 7×20円 付款 1.10 外部設定くに対する姿勢職業等係数(D _{Don} , D _{con}) (SV・1*)(Bg・m²) 付表 9×20円 付款 1.11 外面物 (NO _{Gon}) 海波物 (NO _{Gon}) (KN C _D) m/y 0.61 - 老物 (NO _{Gon}) 海波物 (NO _{Gon}) (KN C _{Don}) m/y 0.01 0.61 - 人間活動 野砂準 (RR _{out} BR _{Gon}) m/h 付款 1.2を照 付款 1.13 中級 を作業(R _{out} BR _{Gon}) (Mo _{Gon}) m/h 付款 1.2を照 付款 1.13 中級 変大漁業後等 (R _{out} BR _{Gon}) (Battalan) m/h 付款 1.2を照 付款 1.15 中級 海岸海流業従事者 (R _{out} BR _{Gon}) (Battalan) (kg/y	1.6×10 ⁵	1.6×10 ⁶	付録 1.9
指数				による再浮遊速	m/y	_	5.6×10 ⁻³	付録 1.8
平戦明		沿岸	海域における堆積	物の年間沈殿量	m/y	7.5×10 ⁻⁵	5.6×10 ⁻³	付録 1.8
Y 付录 1.0				(C -)		5 × 1.0-5	5 ∨ 1 O-5	_
外部接近くに対する実効線最極線低級 (D _{max} , D _{max}) (対表 9 参照	大 24: 44	干頂	」ツ止水ツル販重((S _{nf})	·			
発出版はくに対する支急線量頻等係数 (Dem. Dem.) (Sv - h'ly(Bq - m²)		ナフサゼ	伯具格签55半 (5	D)	•			
数字					1			
原盤						付表	9 参照	
その他 木 (MG _{pol})	食物などの摂 取量		IG _{aqfood}),海産物	(ING_{aqfood})	kg/y	付表	10 参照	付録 1.13
上張 (ING _{nea}) 上張 (ING _{nea}) 上泉 (ING _{nea}) 上泉 (ING _{nea}) 田沙 (村表 13 参照 付録 1.14 一日			水(INC	G_{fw})	m ³ /y	0.61	0.61	
大田活動 呼吸率 (BR _{sat} , BR _{arro})					kg/y	0.037	0.037	_
存在時間	人間活動	呼吸率 (付録 1.14
機作業従事者 表面 上 壌								
接入漁業従事 河川 堆 積 層					·			
海洋漁業従事 沿岸海域堆積				河川堆積層	kg/m³	5×10 ⁻⁸	5×10 ⁻⁸	_
エブロゾルレベル (Air _{aera})			海洋漁業従事	沿岸海域堆積	kg/m³	1×10 ⁻⁷	1×10 ⁻⁷	-
家畜に関するデータ		エアロゾ		, in the seal	m^3/m^3	1×10-11	1×10 ⁻¹¹	_
$(ING_{fodd}) \begin{tabular}{ c c c c c c c c c c } \hline \pm & kg/d & 7 & 7 & - \\ \hline K & kg/d & 10 & 10 & - \\ \hline B & kg/d & 0.3 & 0.3 & - \\ \hline B & kg/d & 0.6 & 0.6 & - \\ \hline E & kg/d & 0.08 & 0.08 & - \\ \hline E & kg/d & 0.02 & 0.02 & - \\ \hline B & kg/d & 0.02 & 0.02 & - \\ \hline B & kg/d & 0.02 & 0.02 & - \\ \hline B & kg/d & 0.02 & 0.02 & - \\ \hline B & kg/d & 0.02 & 0.02 & - \\ \hline B & kg/d & 0.02 & 0.02 & - \\ \hline B & kg/d & 0.02 & 0.02 & - \\ \hline B & m^3/d & 7 \times 10^{-2} & 7 \times 10^{-2} & - \\ \hline I & m^3/d & 5 \times 10^{-3} & 5 \times 10^{-3} & - \\ \hline B & m^3/d & 5 \times 10^{-3} & 5 \times 10^{-3} & - \\ \hline B & m^3/d & 5 \times 10^{-3} & 5 \times 10^{-3} & - \\ \hline B & m^3/d & 5 \times 10^{-3} & 5 \times 10^{-3} & - \\ \hline B & m^3/d & 5 \times 10^{-3} & 5 \times 10^{-3} & - \\ \hline B & m^3/d & 5 \times 10^{-3} & 5 \times 10^{-3} & - \\ \hline B & m^3/d & 5 \times 10^{-3} & 5 \times 10^{-3} & - \\ \hline B & m^3/d & 5 \times 10^{-3} & 5 \times 10^{-3} & - \\ \hline B & m^3/d & 5 \times 10^{-3} & 5 \times 10^{-3} & - \\ \hline B & m^3/d & 0.36 & 0.36 & - \\ \hline B & m^3/h & 0.50 & 0.50 & - \\ \hline B & m^3/h & 0.01 & 0.01 & - \\ \hline B & m^3/h & 0.01 & 0.01 & - \\ \hline B & m^3/h & 0.01 & 0.01 & - \\ \hline B & h/d & 24 & 24 & - \\ \hline $B$$	家畜に関するデ			华				
下 下 下 下 下 下 下 下 下 下	A H C K J O J	/						
題 kg/d 0.3 0.3 $-$ 1			(III O Joad)					
土壌摂取量 牛 kg/d 0.6 0.6 $ (ING_{Ssa})$ $\frac{1}{2}$ kg/d 0.08 0.08 $ R$ kg/d 0.2 0.2 $ R$ kg/d 0.02 0.02 $ R$ R <								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			上陸垣形 星					
下版 kg/d 0.2 0.2								
競技財量 kg/d 0.02 0.02 $-$ 水摂取量 牛 m^3/d 7×10^{-2} 7×10^{-2} $-$ (ING _{fiva}) 羊 m^3/d 4×10^{-3} 4×10^{-3} $-$ 豚 m^3/d 5×10^{-3} 5×10^{-3} $-$ 瓣 m^3/d 5×10^{-4} $-$ 呼吸率 牛 m^3/h 0.36 0.36 $-$ (BR _a) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ が物時間 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ (O _{an}) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 動 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 動 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 動 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 動 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 前 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 前 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$			(IIV G _{ssa})					
水摂取量								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			L. Service					
豚 m^3/d 5×10^{-3} 5×10^{-3} $-$ 鶏 m^3/d 5×10^{-4} $-$ 呼吸率 牛 m^3/h 5.4 5.4 $-$ (BR_a) 羊 m^3/h 0.36 0.36 $-$ 豚 m^3/h 0.50 0.50 $-$ 放牧時間 牛 h/d 24 24 $-$ (O_{an}) 羊 h/d 24 24 $-$ 豚 h/d 24 24 $-$ 調 h/d 24 24 $-$ 飼育密度(N) 牛 $1/m^2$ 4.3×10^{-4} 4.3×10^{-4} $-$ 調 $1/m^2$ 4.3×10^{-4} 4.3×10^{-4} $-$ 鶏 $1/m^2$ 4.3×10^{-4} 4.3×10^{-4} $-$ 鶏 $1/m^2$ 4.3×10^{-4} 4.3×10^{-4} $-$ 鶏 $1/m^2$ 3.0 3.0 $-$								
題 m^3/d 5×10^{-4} 5×10^{-4} $-$ 呼吸率			(ING_{fwa})					
呼吸率 (BR_a) $\stackrel{\mbox{\mbox{$\psi$}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{ψ}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{ψ}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{ψ}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{ψ}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{ψ}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{ψ}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{ψ}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{ψ}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{ψ}}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{ψ}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{\mbox{ψ}}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{\mbox{ψ}}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{\mbox{ψ}}}}}{=}$ $\stackrel{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{\mbox{ψ}}}}}}}{=}$ $\mbox{\$								_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								<u> </u>
下						5.4	5.4	_
下			(BR_a)		m ³ /h	0.36	0.36	_
放牧時間					m ³ /h	0.50	0.50	
放牧時間				鶏	m ³ /h	0.01	0.01	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			放牧時間		h/d	24	24	_
豚 h/d 24 24 — 鶏 h/d 24 24 — 飼育密度 (N) 牛 $1/m^2$ 4.3×10^{-4} 4.3×10^{-4} — 羊 $1/m^2$ 4.8×10^{-4} 4.8×10^{-4} — 豚 $1/m^2$ 4.3×10^{-4} 4.3×10^{-4} — 鶏 $1/m^2$ 3.0 3.0 3.0 —								_
題								_
飼育密度 (N)								_
羊 $1/m^2$ 4.8×10^{-4} 4.8×10^{-4} $-$ 豚 $1/m^2$ 4.3×10^{-4} 4.3×10^{-4} $-$ 鶏 $1/m^2$ 3.0 3.0 $-$			飼育密度 (N)					_
豚 $1/m^2$ 4.3×10^{-4} 4.3×10^{-4} — 鶏 $1/m^2$ 3.0 3.0 —			100 D TO (11)					
鶏 1/m ² 3.0 3.0 —								
*1 - 1101111 A 〒 17 WC 17011 1 / 2年 - A - 1789 田 - 田 - 1782 - 17905 1	L		10 1 (조士)	2 19	1/111	3.0	3.0	

^{※1} TRU2:第2次TRUレポート(電事連・JNC, 2005)。

^{※2} 第2次 TRU レポートと同様の設定根拠の場合は「一」とした。

⁽注) ■は第2次TRUレポート(電事連・JNC, 2005)での設定値から数値が変わったものを表す。

表 6 生活圏評価に使用するデータセット(地形分類:平野部,気候区分:温暖帯,GBI:河川)(1/2)

		この回計画に使用	חיסו דנ			分:温暖帯,GBI ————————————————————————————————————	
パラメ				単位	TRU2 ^{*1} の値	本報告書の値	設定根拠*2
	深さ			m			表 7参照
	面積			m^2	表 "	7参照	表 7参照
	体積			m^3			表 7参照
コンパートメン				-			_
諸量	体積電	含水率		-			_
	浮遊物	勿 堆積量		kg/m ³	表 7	7参照	_
	水の額	密度		kg/m^3			_
	コン	パートメントの密	度	kg/m ³			_
コンパートメン	ノト 灌漑フ	水量(Q _{irr})		m ³ /y	1.5×10 ⁴	2.4×10 ⁴	付録 1.1
		曼透/流出量(d _d		m/y	0.7	0.4	付録 1.2
に係るパラメー	ター年間活	$$ $ $		m ³ /y	100	100	_
	河川池	流量(Q _{rw})		m ³ /y	1×10^{8}	1.0×10 ⁹	付録 1.3
	海洋技	広散による希釈水	.量(V _{fsw})	m ³ /y	1×10^{10}	1×10^{10}	付録 1.5
	侵食证	速度(E _{sed})		m/y	1×10 ⁻⁴	3×10 ⁻⁴	付録 1.6
	浚渫	/蛇行により堆き	債する堆積物量	m ³ /y	1.6	1.6	_
	$(V_{dm}$			m-/y			
		椎積層からの再浮		m/y	1×10 ⁻⁴	4×10 ⁻¹	付録 1.7
		こおける堆積物の	年間沈殿量(Sg)	m/y	1.6×10 ⁻⁵	4×10 ⁻¹	付録 1.7
		ドロード量 (B _l)		kg/y	1.6×10 ⁵	1.6×10 ⁶	付録 1.9
	沿岸海	毎域での生物擾乱	による再浮遊速			5.6×10 ⁻³	付録 1.8
	度 (r			m/y	_	3.0^10	1.1 水公 1.0
		毎域における堆積	物の年間沈殿量	m/y	7.5×10 ⁻⁵	5.6×10 ⁻³	付録 1.8
	(S _g) 年間(の正味の沈殿量((S.c)	m/y	5×10 ⁻⁵	5×10 ⁻⁵	_
半減期	一十四。	/ ユニットvノ(/L <i>f</i> 汉 里 (.∨nj /	y y		7参照	付録 1.10
	する宝効約	录量換算係数(D _{in}	a Dint)	Sv/Bq		8参照	付録 1.11
		R量换算係数(Din R量換算係数(De		$(Sv \cdot h^{-1})/(Bq \cdot m^{-3})$		9 参照	付録 1.12
		NG_{crop}),畜産物					付録 1.13
		G_{aqfood}),海産物		kg/y	付表	10 参照	1.1 25/2 1.13
-	その他	水 (INC		m ³ /y	0.61	0.61	_
		土壌(kg/y	0.037	0.037	_
人間活動	呼吸率(B	BR_{sed} , BR_{aero})		m^3/h	付表	13 参照	付録 1.14
		(O_{sed}, O_w, O_{aero})		h/y		14 参照	付録 1.15
		農作業従事者	表 面 土 壤 (dust _{sed})	kg/m ³	2×10 ⁻⁶	2×10 ⁻⁶	_
	ダストレ ベル	淡水漁業従事者	河川堆積層 (dust _{sed})	kg/m³	5×10 ⁻⁸	5×10 ⁻⁸	_
		海洋漁業従事者	沿岸海域堆積 層(dust _{sed})	kg/m³	1×10 ⁻⁷	1×10 ⁻⁷	_
	エアロゾノ	レレベル (Air _{aero})		m^3/m^3	1×10 ⁻¹¹	1×10 ⁻¹¹	_
家畜に関するデ		飼料摂取量	牛	kg/d	50	50	_
		(ING_{fodd})	羊	kg/d	7	7	_
			豚	kg/d	10	10	_
			鶏	kg/d	0.3	0.3	_
		土壌摂取量	牛	kg/d	0.6	0.6	_
		(ING_{ssa})	羊	kg/d	0.08	0.08	_
			豚	kg/d	0.2	0.2	_
			鶏	kg/d	0.02	0.02	_
		水摂取量	牛	m ³ /d	7×10 ⁻²	7×10 ⁻²	_
		(ING_{fwa})	羊	m ³ /d	4×10 ⁻³	4×10 ⁻³	_
			豚	m ³ /d	5×10 ⁻³	5×10 ⁻³	_
			鶏	m ³ /d	5×10 ⁻⁴	5×10 ⁻⁴	_
		呼吸率	牛	m ³ /h	5.4	5.4	_
		(BR_a)	羊	m ³ /h	0.36	0.36	_
			豚	m ³ /h	0.50	0.50	_
		11 11 - 1	鶏	m ³ /h	0.01	0.01	_
		放牧時間	牛	h/d	24	24	_
		(O_{an})	羊	h/d	24	24	_
豚 鶏				h/d	24	24	_
		h/d	24	24	_		
		飼育密度(N)	牛	1/m ²	4.3×10 ⁻⁴	4.3×10 ⁻⁴	_
			羊	1/m ²	4.8×10 ⁻⁴	4.8×10 ⁻⁴	_
			豚	1/m ²	4.3×10 ⁻⁴	4.3×10 ⁻⁴	_
			鶏	$1/m^2$	3.0	3.0]-
%1 TDII2 · 答 2)	分 TDI i ンっ	ポート(電事連・	INC 2005)				

^{※1} TRU2:第2次 TRU レポート (電事連・JNC, 2005)。

^{※2} 第2次 TRU レポートと同様の設定根拠の場合は「一」とした。

⁽注) ■は第2次TRUレポート(電事連・JNC, 2005)での設定値から数値が変わったものを表す。

付属書 6-1 数式 (3-31) の修正対応表 (赤字が修正箇所)

修正前(誤)

・沿岸海水域をGBIとした際のエアロゾルfl7(沿岸海域水→表面土壌)

$$\frac{T_{ss}Q_{aero}}{V_{lm}} \tag{3-31}$$

$T_{ss}: シースプレイ濃縮係数 [-]$

 Q_{aen} : 海洋エアロゾルの陸地への年間移行量 $[m^3/y]$

 V_{lm} :沿岸海域水コンパートメントの体積 $[m^3]$

修正後(正)

・沿岸海水域をGBIとした際のエアロゾルf17(沿岸海域水→表面土壌)

$$\frac{T_{aero}Q_{aero}}{V_{lm}} \tag{3-31}$$

Taem: エアロゾルにおける濃縮係数 [-]

 Q_{aen} : 海洋エアロゾルの陸地への年間移行量 $[m^3/y]$

 V_{lm} : 沿岸海域水コンパートメントの体積 [m^3]

付属書 6-1 表 9 の修正対応表(赤字が修正箇所)

修正前(誤)

表 9 GBI を海域とした場合の生活圏評価に用いるデータセット

パラメ	単位	本報告書での設定値	
コンパートメント間の移行 プロセスに係るパラメータ	シースプレイ濃縮係数 (<i>T</i> _{ss})	-	1
	海洋エアロゾルの陸地へ の年間移行量 (<i>Qaero</i>)	[m³/y]	1×10^2

修正後(正)

表9 GBI を海域とした場合の生活圏評価に用いるデータセット

パラメ	単位	本報告書での設定値	
コンパートメント間の移行 プロセスに係るパラメータ	海洋エアロゾルの陸地へ の年間移行量(<i>Qaen</i>)	[m³/y]	1×10^2

付表 7 生活圏評価で用いた半減期 (1/2)

技種		(
C1-36	核種	半減期[y]
Co-60 5.271 Ni-59 1.010 × 10 ⁵ Ni-63 1.001 × 10 ² Se-79 2.950 × 10 ⁵ Sr-90 2.879 × 10 ¹ Zr-93 1.530 × 10 ⁶ Nb-93m 1.613 × 10 ¹ Nb-94 2.030 × 10 ⁴ Mo-93 4.000 × 10 ³ Tc-99 2.111 × 10 ⁵ Pd-107 6.500 × 10 ⁶ Sn-126 2.300 × 10 ⁵ I-129 1.570 × 10 ⁷ Cs-135 2.300 × 10 ⁶ Cs-137 3.017 × 10 ¹ Pb-210 2.220 × 10 ¹ Po-210 3.789 × 10 ⁻¹ Ra-228 5.750 Ac-227 2.177 × 10 ¹ Th-228 1.912 Th-229 7.340 × 10 ³ Th-230 7.538 × 10 ⁴ Th-231 3.276 × 10 ⁴ Pa-231 3.276 × 10 ⁴ Pa-232 3.589 × 10 ⁻³ Pa-233 7.388 × 10 ² U-234 2.455 × 10 ⁵ U-235 7.040 × 10 ⁸ <		5.700×10^{3}
Ni-59 Ni-63 1.001 × 10 ² Se-79 2.950 × 10 ⁵ Sr-90 2.879 × 10 ¹ Zr-93 1.530 × 10 ⁶ Nb-93m 1.613 × 10 ¹ Nb-94 2.030 × 10 ⁴ Mo-93 4.000 × 10 ³ Tc-99 2.111 × 10 ⁵ Pd-107 6.500 × 10 ⁶ Sn-126 2.300 × 10 ⁵ I-129 1.570 × 10 ⁷ Cs-135 2.300 × 10 ⁶ Cs-137 3.017 × 10 ¹ Pb-210 2.220 × 10 ¹ Po-210 3.789 × 10 ⁻¹ Ra-226 1.600 × 10 ³ Ra-228 5.750 Ac-227 2.177 × 10 ¹ Th-228 1.912 Th-229 7.340 × 10 ³ Th-230 7.538 × 10 ⁴ Th-232 1.405 × 10 ¹⁰ Pa-231 3.276 × 10 ⁴ Pa-232 3.589 × 10 ⁻³ Pa-233 7.388 × 10 ⁻² U-234 2.455 × 10 ⁵ U-235 U-236 2.342 × 10 ⁷ U-238 4.468 × 10 ⁹ Np-236 Np-236 1.540 × 10 ⁵	Cl-36	3.010×10^{5}
Ni-63 1.001 × 10² Se-79 2.950 × 10⁵ Sr-90 2.879 × 10¹ Zr-93 1.530 × 10⁶ Nb-93m 1.613 × 10¹ Nb-94 2.030 × 10⁴ Mo-93 4.000 × 10³ Tc-99 2.111 × 10⁵ Pd-107 6.500 × 10⁶ Sn-126 2.300 × 10⁶ Sn-126 2.300 × 10⁶ Sn-126 2.300 × 10⁶ Cs-135 2.300 × 10⁶ Cs-137 3.017 × 10¹ Pb-210 2.220 × 10¹ Po-210 3.789 × 10⁻¹ Ra-226 1.600 × 10³ Ra-228 5.750 Ac-227 2.177 × 10¹ Th-228 1.912 Th-229 7.340 × 10³ Th-230 7.538 × 10⁴ Th-231 3.276 × 10⁴ Pa-231 3.276 × 10⁴ Pa-232 3.589 × 10⁻³ Pa-233 7.388 × 10⁻² U-234 2.455 × 10⁵ U-235 7.040 × 10⁶ U-236 2	Co-60	5.271
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni-59	1.010×10^{5}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni-63	1.001×10^{2}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Se-79	2.950×10^{5}
Nb-93m 1.613 × 10¹ Nb-94 2.030 × 10⁴ Mo-93 4.000 × 10³ Tc-99 2.111 × 10⁵ Pd-107 6.500 × 10⁶ Sn-126 2.300 × 10⁶ I-129 1.570 × 10⁻ Cs-135 2.300 × 10⁶ Cs-137 3.017 × 10¹ Pb-210 2.220 × 10¹ Po-210 3.789 × 10⁻¹ Ra-226 1.600 × 10³ Ra-228 5.750 Ac-227 2.177 × 10¹ Th-228 1.912 Th-229 7.340 × 10³ Th-230 7.538 × 10⁴ Th-231 3.276 × 10⁴ Pa-231 3.589 × 10⁻³ Pa-232 3.589 × 10⁻³ U-233 1.592 × 10⁵ U-234 2.455 × 10⁵ U-235 7.040 × 10⁶ U-236 2.342 × 10⁻ U-238 4.468 × 10⁰ Np-236 1.540 × 10⁵	Sr-90	2.879×10^{1}
Nb-94 2.030 × 10 ⁴ Mo-93 4.000 × 10 ³ Tc-99 2.111 × 10 ⁵ Pd-107 6.500 × 10 ⁶ Sn-126 2.300 × 10 ⁵ I-129 1.570 × 10 ⁷ Cs-135 2.300 × 10 ⁶ Cs-137 3.017 × 10 ¹ Pb-210 2.220 × 10 ¹ Po-210 3.789 × 10 ⁻¹ Ra-226 1.600 × 10 ³ Ra-228 5.750 Ac-227 2.177 × 10 ¹ Th-228 1.912 Th-229 7.340 × 10 ³ Th-230 7.538 × 10 ⁴ Th-231 3.276 × 10 ⁴ Pa-231 3.276 × 10 ⁴ Pa-232 3.589 × 10 ⁻³ Pa-233 7.388 × 10 ⁻² U-234 2.455 × 10 ⁵ U-235 7.040 × 10 ⁸ U-236 2.342 × 10 ⁷ U-238 4.468 × 10 ⁹ Np-236 1.540 × 10 ⁵	Zr-93	1.530×10^{6}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.613×10^{1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nb-94	2.030×10^{4}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mo-93	4.000×10^{3}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tc-99	2.111×10 ⁵
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pd-107	6.500×10^{6}
$\begin{array}{c ccccc} Cs-135 & 2.300\times10^6\\ \hline Cs-137 & 3.017\times10^1\\ \hline Pb-210 & 2.220\times10^1\\ \hline Po-210 & 3.789\times10^{-1}\\ \hline Ra-226 & 1.600\times10^3\\ \hline Ra-228 & 5.750\\ \hline Ac-227 & 2.177\times10^1\\ \hline Th-228 & 1.912\\ \hline Th-229 & 7.340\times10^3\\ \hline Th-230 & 7.538\times10^4\\ \hline Th-232 & 1.405\times10^{10}\\ \hline Pa-231 & 3.276\times10^4\\ \hline Pa-232 & 3.589\times10^3\\ \hline Pa-233 & 7.388\times10^2\\ \hline U-232 & 6.890\times10^1\\ \hline U-233 & 1.592\times10^5\\ \hline U-234 & 2.455\times10^5\\ \hline U-235 & 7.040\times10^8\\ \hline U-236 & 2.342\times10^7\\ \hline U-238 & 4.468\times10^9\\ \hline Np-236 & 1.540\times10^5\\ \hline \end{array}$	Sn-126	2.300×10^{5}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I-129	1.570×10^{7}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cs-135	2.300×10^{6}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cs-137	3.017×10^{1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pb-210	2.220×10^{1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Po-210	3.789×10^{-1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ra-226	1.600×10^{3}
$\begin{array}{c cccc} Th-228 & 1.912 \\ Th-229 & 7.340\times 10^3 \\ Th-230 & 7.538\times 10^4 \\ Th-232 & 1.405\times 10^{10} \\ Pa-231 & 3.276\times 10^4 \\ \hline Pa-232 & 3.589\times 10^3 \\ Pa-233 & 7.388\times 10^2 \\ U-232 & 6.890\times 10^1 \\ U-233 & 1.592\times 10^5 \\ U-234 & 2.455\times 10^5 \\ U-235 & 7.040\times 10^8 \\ U-236 & 2.342\times 10^7 \\ U-238 & 4.468\times 10^9 \\ Np-236 & 1.540\times 10^5 \\ \end{array}$	Ra-228	5.750
$\begin{array}{c cccc} Th-229 & 7.340\times 10^3 \\ Th-230 & 7.538\times 10^4 \\ Th-232 & 1.405\times 10^{10} \\ Pa-231 & 3.276\times 10^4 \\ Pa-232 & 3.589\times 10^3 \\ Pa-233 & 7.388\times 10^2 \\ U-232 & 6.890\times 10^1 \\ U-233 & 1.592\times 10^5 \\ U-234 & 2.455\times 10^5 \\ U-235 & 7.040\times 10^8 \\ U-236 & 2.342\times 10^7 \\ U-238 & 4.468\times 10^9 \\ Np-236 & 1.540\times 10^5 \\ \end{array}$	Ac-227	2.177×10^{1}
$\begin{array}{c cccc} Th-230 & 7.538\times 10^4 \\ \hline Th-232 & 1.405\times 10^{10} \\ Pa-231 & 3.276\times 10^4 \\ \hline Pa-232 & 3.589\times 10^3 \\ Pa-233 & 7.388\times 10^2 \\ \hline U-232 & 6.890\times 10^1 \\ U-233 & 1.592\times 10^5 \\ \hline U-234 & 2.455\times 10^5 \\ U-235 & 7.040\times 10^8 \\ \hline U-236 & 2.342\times 10^7 \\ U-238 & 4.468\times 10^9 \\ \hline Np-236 & 1.540\times 10^5 \\ \hline \end{array}$	Th-228	1.912
$\begin{array}{c cccc} Th-232 & 1.405\times 10^{10} \\ Pa-231 & 3.276\times 10^{4} \\ \hline Pa-232 & 3.589\times 10^{-3} \\ Pa-233 & 7.388\times 10^{-2} \\ U-232 & 6.890\times 10^{1} \\ U-233 & 1.592\times 10^{5} \\ U-234 & 2.455\times 10^{5} \\ U-235 & 7.040\times 10^{8} \\ U-236 & 2.342\times 10^{7} \\ U-238 & 4.468\times 10^{9} \\ Np-236 & 1.540\times 10^{5} \\ \end{array}$		
$\begin{array}{c ccccc} Pa-231 & 3.276\times 10^4 \\ \hline Pa-232 & 3.589\times 10^{-3} \\ \hline Pa-233 & 7.388\times 10^{-2} \\ \hline U-232 & 6.890\times 10^1 \\ \hline U-233 & 1.592\times 10^5 \\ \hline U-234 & 2.455\times 10^5 \\ \hline U-235 & 7.040\times 10^8 \\ \hline U-236 & 2.342\times 10^7 \\ \hline U-238 & 4.468\times 10^9 \\ \hline Np-236 & 1.540\times 10^5 \\ \hline \end{array}$	Th-230	7.538×10^{4}
$\begin{array}{c ccccc} Pa-232 & 3.589\times 10^{-3} \\ Pa-233 & 7.388\times 10^{-2} \\ U-232 & 6.890\times 10^{1} \\ U-233 & 1.592\times 10^{5} \\ U-234 & 2.455\times 10^{5} \\ U-235 & 7.040\times 10^{8} \\ U-236 & 2.342\times 10^{7} \\ U-238 & 4.468\times 10^{9} \\ Np-236 & 1.540\times 10^{5} \\ \end{array}$	Th-232	1.405×10^{10}
$\begin{array}{c cccc} Pa-233 & 7.388\times 10^{-2} \\ U-232 & 6.890\times 10^{1} \\ U-233 & 1.592\times 10^{5} \\ U-234 & 2.455\times 10^{5} \\ U-235 & 7.040\times 10^{8} \\ U-236 & 2.342\times 10^{7} \\ U-238 & 4.468\times 10^{9} \\ Np-236 & 1.540\times 10^{5} \\ \end{array}$		
$\begin{array}{c cccc} & U-232 & 6.890\times 10^1 \\ & U-233 & 1.592\times 10^5 \\ & U-234 & 2.455\times 10^5 \\ & U-235 & 7.040\times 10^8 \\ & U-236 & 2.342\times 10^7 \\ & U-238 & 4.468\times 10^9 \\ & Np-236 & 1.540\times 10^5 \\ \end{array}$	Pa-232	3.589×10^{-3}
$\begin{array}{c cccc} U-233 & 1.592\times 10^5 \\ U-234 & 2.455\times 10^5 \\ U-235 & 7.040\times 10^8 \\ U-236 & 2.342\times 10^7 \\ U-238 & 4.468\times 10^9 \\ Np-236 & 1.540\times 10^5 \\ \end{array}$	Pa-233	7.388×10^{-2}
$\begin{array}{c cccc} U-234 & 2.455\times 10^5 \\ U-235 & 7.040\times 10^8 \\ U-236 & 2.342\times 10^7 \\ U-238 & 4.468\times 10^9 \\ Np-236 & 1.540\times 10^5 \\ \end{array}$	U-232	6.890×10^{1}
	U-233	1.592×10^{5}
	U-234	2.455×10^{5}
U-238 4.468×10^9 Np-236 1.540×10^5	U-235	7.040×10^{8}
Np-236 1.540×10 ⁵	U-236	2.342×10^7
	U-238	4.468×10^9
Nn-237 2.144×10^6	Np-236	1.540×10^{5}
11p 257 2.1 11 × 10	Np-237	2.144×10^{6}

付表 7 生活圏評価で用いた半減期(2/2)

核種	半減期[y]
Pu-236	2.858
Pu-238	8.770×10^{1}
Pu-239	2.411×10^4
Pu-240	6.564×10^3
Pu-241	1.435×10^{1}
Pu-242	3.750×10^{5}
Pu-244	8.000×10^{7}
Am-241	4.322×10^{2}
Am-242m	1.410×10^2
Am-243	7.370×10^{3}
Cm-242	4.457×10^{-1}
Cm-243	2.910×10^{1}
Cm-244	1.810×10^{1}
Cm-245	8.500×10^{3}
Cm-246	4.760×10^{3}
Cm-247	1.560×10^{7}
Cm-248	3.480×10^{5}

付表 7 生活圏評価で用いた半減期 (1/2)

核種	半減期[y]
C-14	5.700×10^3
Cl-36	3.010×10^{5}
Co-60	5.271
Ni-59	1.010×10^{5}
Ni-63	1.001×10^{2}
Se-79	2.950×10^{5}
Sr-90	2.879×10^{1}
Zr-93	1.530×10^{6}
Nb-93m	1.613×10^{1}
Nb-94	2.030×10^4
Mo-93	4.000×10^{3}
Tc-99	2.111×10^{5}
Pd-107	6.500×10^6
Sn-126	2.300×10^{5}
I-129	1.570×10^{7}
Cs-135	2.300×10^{6}
Cs-137	3.017×10^{1}
Pb-210	2.220×10^{1}
Po-210	3.789×10^{-1}
Ra-226	1.600×10^{3}
Ra-228	5.750
Ac-227	2.177×10^{1}
Th-228	1.912
Th-229	7.340×10^3
Th-230	7.538×10^4
Th-232	1.405×10^{10}
Pa-231	3.276×10^4
Pa-233	7.388×10^{-2}
U-232	6.890×10^{1}
U-233	1.592×10^{5}
U-234	2.455×10^{5}
U-235	7.040×10^{8}
U-236	2.342×10^{7}
U-238	4.468×10^9
Np-236	1.540×10^{5}
Np-237	2.144×10^{6}

付表 7 生活圏評価で用いた半減期(2/2)

核種	半減期[y]
Pu-236	2.858
Pu-238	8.770×10^{1}
Pu-239	2.411×10^4
Pu-240	6.564×10^3
Pu-241	1.435×10^{1}
Pu-242	3.750×10^{5}
Pu-244	8.000×10^{7}
Am-241	4.322×10^{2}
Am-242m	1.410×10^2
Am-243	7.370×10^{3}
Cm-243	2.910×10^{1}
Cm-244	1.810×10^{1}
Cm-245	8.500×10^{3}
Cm-246	4.760×10^{3}
Cm-247	1.560×10^{7}
Cm-248	3.480×10^{5}

付表 8 生活圏評価に用いた内部被ばくに係る実効線量換算係数 (1/2)

核種	経口摂取 [Sv/Bq]	吸入 [Sv/Bq]
C-14	5.8×10 ⁻¹⁰	2.0×10 ⁻⁹
Cl-36	9.3×10 ⁻¹⁰	7.3×10 ⁻⁹
Co-60	3.4×10 ⁻⁹	1.0×10 ⁻⁸
Ni-59	6.3×10 ⁻¹¹	1.3×10 ⁻¹⁰
Ni-63	1.5×10 ⁻¹⁰	4.8×10 ⁻¹⁰
Se-79	2.9×10 ⁻⁹	1.1×10 ⁻⁹
Sr-90	3.1×10 ⁻⁸	3.8×10 ⁻⁸
Zr-93	1.2×10 ⁻⁹	1.0×10 ⁻⁸
Nb-93m	1.2×10 ⁻¹⁰	5.1×10 ⁻¹⁰
Nb-94	1.7×10 ⁻⁹	1.1×10 ⁻⁸
Mo-93	3.2×10 ⁻⁹	1.0×10 ⁻⁹
Tc-99	6.4×10 ⁻¹⁰	4.0×10 ⁻⁹
Pd-107	3.7×10 ⁻¹¹	5.9×10 ⁻¹⁰
Sn-126	5.1×10 ⁻⁹	2.8×10 ⁻⁸
I-129	1.1×10 ⁻⁷	3.6×10 ⁻⁸
Cs-135	2.0×10 ⁻⁹	6.9×10 ⁻¹⁰
Cs-137	1.3×10 ⁻⁸	4.6×10 ⁻⁹
Pb-210	6.9×10 ⁻⁷	1.2×10 ⁻⁶
Po-210	1.2×10 ⁻⁶	3.3×10 ⁻⁶
Ra-226	2.8×10 ⁻⁷	3.5×10 ⁻⁶
Ra-228	6.9×10 ⁻⁷	2.6×10 ⁻⁶
Ac-227	1.2×10 ⁻⁶	5.7×10 ⁻⁴
Th-228	1.4×10 ⁻⁷	4.3×10 ⁻⁵
Th-229	6.1×10 ⁻⁷	8.6×10 ⁻⁵
Th-230	2.1×10 ⁻⁷	1.4×10 ⁻⁵
Th-232	2.3×10 ⁻⁷	2.5×10 ⁻⁵
Pa-231	7.1×10 ⁻⁷	1.4×10^{-4}
Pa-232	7.2×10 ⁻¹⁰	1.0×10 ⁻⁸
Pa-233	8.7×10 ⁻¹⁰	3.3×10 ⁻⁹
U-232	3.3×10 ⁻⁷	7.8×10 ⁻⁶
U-233	5.1×10 ⁻⁸	3.6×10 ⁻⁶
U-234	4.9×10 ⁻⁸	3.5×10 ⁻⁶
U-235	4.7×10 ⁻⁸	3.1×10 ⁻⁶
U-236	4.7×10 ⁻⁸	3.2×10 ⁻⁶
U-238	4.8×10 ⁻⁸	2.9×10 ⁻⁶
Np-236	1.7×10 ⁻⁸	3.2×10 ⁻⁶
Np-237	1.1×10 ⁻⁷	2.3×10 ⁻⁵

付表 8 生活圏評価に用いた内部被ばくに係る実効線量換算係数 (2/2)

核種	経口摂取 [Sv/Bq]	吸入 [Sv/Bq]
Pu-236	8.7×10 ⁻⁸	2.0×10 ⁻⁵
Pu-238	2.3×10 ⁻⁷	4.6×10 ⁻⁵
Pu-239	2.5×10^{-7}	5.0×10^{-5}
Pu-240	2.5×10 ⁻⁷	5.0×10 ⁻⁵
Pu-241	4.8×10 ⁻⁹	9.0×10 ⁻⁷
Pu-242	2.4×10^{-7}	4.8×10^{-5}
Pu-244	2.4×10 ⁻⁷	4.7×10 ⁻⁵
Am-241	2.0×10^{-7}	4.2×10^{-5}
Am-242m	1.9×10 ⁻⁷	3.7×10 ⁻⁵
Am-243	2.0×10^{-7}	4.1×10^{-5}
Cm-242	1.2×10^{-8}	5.2×10^{-6}
Cm-243	1.5×10 ⁻⁷	3.1×10 ⁻⁵
Cm-244	1.2×10^{-7}	2.7×10^{-5}
Cm-245	2.1×10 ⁻⁷	4.2×10 ⁻⁵
Cm-246	2.1×10 ⁻⁷	4.2×10 ⁻⁵
Cm-247	1.9×10 ⁻⁷	3.9×10 ⁻⁵
Cm-248	7.7×10^{-7}	1.5×10^{-4}

付表 8 生活圏評価に用いた内部被ばくに係る実効線量換算係数 (1/2)

核種	経口摂取 [Sv/Bq]	吸入 [Sv/Bq]
C-14	5.8×10 ⁻¹⁰	2.0×10 ⁻⁹
Cl-36	9.3×10 ⁻¹⁰	7.3×10 ⁻⁹
Co-60	3.4×10 ⁻⁹	1.0×10 ⁻⁸
Ni-59	6.3×10 ⁻¹¹	1.3×10 ⁻¹⁰
Ni-63	1.5×10 ⁻¹⁰	4.8×10 ⁻¹⁰
Se-79	2.9×10 ⁻⁹	1.1×10 ⁻⁹
Sr-90	3.1×10 ⁻⁸	3.8×10 ⁻⁸
Zr-93	1.2×10 ⁻⁹	1.0×10 ⁻⁸
Nb-93m	1.2×10 ⁻¹⁰	5.1×10 ⁻¹⁰
Nb-94	1.7×10 ⁻⁹	1.1×10 ⁻⁸
Mo-93	3.2×10 ⁻⁹	1.0×10 ⁻⁹
Tc-99	6.4×10 ⁻¹⁰	4.0×10 ⁻⁹
Pd-107	3.7×10 ⁻¹¹	5.9×10 ⁻¹⁰
Sn-126	5.1×10 ⁻⁹	2.8×10 ⁻⁸
I-129	1.1×10 ⁻⁷	3.6×10 ⁻⁸
Cs-135	2.0×10 ⁻⁹	6.9×10 ⁻¹⁰
Cs-137	1.3×10 ⁻⁸	4.6×10 ⁻⁹
Pb-210	6.9×10 ⁻⁷	1.2×10 ⁻⁶
Po-210	1.2×10 ⁻⁶	3.3×10 ⁻⁶
Ra-226	2.8×10 ⁻⁷	3.5×10 ⁻⁶
Ra-228	6.9×10 ⁻⁷	2.6×10 ⁻⁶
Ac-227	1.2×10 ⁻⁶	5.7×10 ⁻⁴
Th-228	1.4×10 ⁻⁷	4.3×10 ⁻⁵
Th-229	6.1×10 ⁻⁷	8.6×10 ⁻⁵
Th-230	2.1×10 ⁻⁷	1.4×10 ⁻⁵
Th-232	2.3×10 ⁻⁷	2.5×10 ⁻⁵
Pa-231	7.1×10 ⁻⁷	1.4×10^{-4}
Pa-233	8.7×10 ⁻¹⁰	3.3×10 ⁻⁹
U-232	3.3×10 ⁻⁷	7.8×10 ⁻⁶
U-233	5.1×10 ⁻⁸	3.6×10 ⁻⁶
U-234	4.9×10 ⁻⁸	3.5×10 ⁻⁶
U-235	4.7×10 ⁻⁸	3.1×10 ⁻⁶
U-236	4.7×10 ⁻⁸	3.2×10 ⁻⁶
U-238	4.8×10 ⁻⁸	2.9×10 ⁻⁶
Np-236	1.7×10 ⁻⁸	3.2×10 ⁻⁶
Np-237	1.1×10 ⁻⁷	2.3×10 ⁻⁵

付表 8 生活圏評価に用いた内部被ばくに係る実効線量換算係数 (2/2)

核種	経口摂取 [Sv/Bq]	吸入 [Sv/Bq]
Pu-236	8.7×10 ⁻⁸	2.0×10 ⁻⁵
Pu-238	2.3×10^{-7}	4.6×10^{-5}
Pu-239	2.5×10^{-7}	5.0×10^{-5}
Pu-240	2.5×10^{-7}	5.0×10^{-5}
Pu-241	4.8×10^{-9}	9.0×10^{-7}
Pu-242	2.4×10^{-7}	4.8×10^{-5}
Pu-244	2.4×10^{-7}	4.7×10^{-5}
Am-241	2.0×10^{-7}	4.2×10^{-5}
Am-242m	1.9×10^{-7}	3.7×10^{-5}
Am-243	2.0×10^{-7}	4.1×10^{-5}
Cm-243	1.5×10^{-7}	3.1×10^{-5}
Cm-244	1.2×10^{-7}	2.7×10^{-5}
Cm-245	2.1×10^{-7}	4.2×10^{-5}
Cm-246	2.1×10^{-7}	4.2×10^{-5}
Cm-247	1.9×10^{-7}	3.9×10^{-5}
Cm-248	7.7×10^{-7}	1.5×10^{-4}

付属書 6-1 付表 9 の修正対応表(赤字が修正箇所)

付表 9 生活圏評価に用いた外部被ばくに係る実効線量換算係数 (1/2)

で、 上沿回に関うに、 にいいので、 でんが、 でんが、 でんが、 でんが、 でんが、 でんが、 でんが、 でん				
核種	水	土壌(堆積物)		
	$[(Sv \cdot h^{-1})/(Bq \cdot m^{-3})]$	$[(Sv \cdot h^{-1})/(Bq \cdot m^{-3})]$		
C-14	0	0		
Cl-36	4.6×10^{-17}	2.9×10^{-17}		
Co-60	7.3×10^{-13}	4.6×10^{-13}		
Ni-59	4.9×10^{-18}	3.1×10^{-18}		
Ni-63	0	0		
Se-79	0	0		
Sr-90	2.2×10 ⁻²¹	1.4×10^{-21}		
Zr-93	3.2×10^{-18}	2.0×10^{-18}		
Nb-93m	3.3×10^{-18}	2.1×10^{-18}		
Nb-94	4.7×10^{-13}	2.9×10^{-13}		
Mo-93	2.2×10 ⁻¹⁷	1.4×10^{-17}		
Tc-99	1.5×10 ⁻¹⁹	9.4×10^{-20}		
Pd-107	0	0		
Sn-126	6.0×10^{-13}	3.8×10^{-13}		
I-129	7.2×10^{-16}	4.5×10^{-16}		
Cs-135	0	0		
Cs-137	1.7×10^{-13}	1.1×10^{-13}		
Pb-210	1.8×10 ⁻¹⁶	1.1×10^{-16}		
Po-210	2.5×10^{-18}	1.6×10^{-18}		
Ra-226	5.0×10^{-13}	3.1×10^{-13}		
Ra-228	2.7×10^{-13}	1.7×10^{-13}		
Ac-227	1.2×10 ⁻¹³	7.5×10 ⁻¹⁴		

付表 9 生活圏評価に用いた外部被ばくに係る実効線量換算係数 (2/2)

130 工作国計画に用いた。ため、大学の大学が発生が発生に				
核種	水	土壌(堆積物)		
1次作里	[(Sv • h ⁻¹)/(Bq • m ⁻³)]	$[(Sv \cdot h^{-1})/(Bq \cdot m^{-3})]$		
Th-228	4.5×10^{-13}	2.8×10^{-13}		
Th-229	9.3×10 ⁻¹⁴	5.8×10 ⁻¹⁴		
Th-230	9.0×10 ⁻¹⁷	5.6×10^{-17}		
Th-232	3.8×10 ⁻¹⁷	2.4×10 ⁻¹⁷		
Pa-231	1.1×10 ⁻¹⁴	6.9×10^{-15}		
Pa-232	3.6×10^{-13}	1.1×10^{-13}		
Pa-233	6.1×10^{-14}	3.8×10^{-14}		
U-232	6.3×10^{-17}	3.9×10^{-17}		
U-233	8.5×10 ⁻¹⁷	5.3×10^{-17}		
U-234	2.7×10^{-17}	1.7×10^{-17}		
U-235	5.1×10^{-14}	3.2×10^{-14}		
U-236	1.3×10^{-17}	8.1×10^{-18}		
U-238	7.5×10^{-15}	4.7×10^{-15}		
Np-236	2.3×10^{-14}	1.4×10^{-14}		
Np-237	5.8×10 ⁻¹⁵	3.6×10^{-15}		
Pu-236	6.0×10^{-18}	3.8×10^{-18}		
Pu-238	6.6×10^{-18}	4.1×10^{-18}		
Pu-239	1.5×10^{-17}	9.4×10^{-18}		
Pu-240	7.1×10^{-18}	4.4×10 ⁻¹⁸		
Pu-241	1.4×10^{-18}	8.8×10^{-19}		
Pu-242	3.2×10^{-17}	2.0×10^{-17}		
Pu-244	9.9×10^{-14}	6.2×10^{-14}		
Am-241	3.5×10^{-15}	2.2×10^{-15}		
Am-242m	4.6×10^{-15}	2.9×10^{-15}		
Am-243	6.2×10^{-14}	3.9×10^{-14}		
Cm-242	7.1×10^{-18}	4.4×10 ⁻¹⁸		
Cm-243	3.8×10^{-14}	2.4×10^{-14}		
Cm-244	9.9×10^{-18}	6.2×10^{-18}		
Cm-245	2.5×10^{-14}	1.6×10 ⁻¹⁴		
Cm-246	1.1×10^{-15}	6.9×10^{-16}		
Cm-247	9.6×10 ⁻¹⁴	6.0×10^{-14}		
Cm-248	3.0×10^{-13}	1.9×10^{-13}		

付表 9 生活圏評価に用いた外部被ばくに係る実効線量換算係数 (1/2)

衣 9 生活性計画に用いた外間板は、1にはる天刻球里揆昇は致(1)				
核種	水	土壌(堆積物)		
	$[(Sv \cdot h^{-1})/(Bq \cdot m^{-3})]$	$[(Sv \cdot h^{-1})/(Bq \cdot m^{-3})]$		
C-14	0	0		
Cl-36	4.6×10^{-17}	2.9×10^{-17}		
Co-60	7.3×10^{-13}	4.6×10^{-13}		
Ni-59	4.9×10^{-18}	3.1×10^{-18}		
Ni-63	0	0		
Se-79	0	0		
Sr-90	2.2×10^{-21}	1.4×10^{-21}		
Zr-93	3.2×10^{-18}	2.0×10^{-18}		
Nb-93m	3.3×10^{-18}	2.1×10^{-18}		
Nb-94	4.7×10^{-13}	2.9×10^{-13}		
Mo-93	2.2×10 ⁻¹⁷	1.4×10 ⁻¹⁷		
Tc-99	1.5×10^{-19}	9.4×10^{-20}		
Pd-107	0	0		
Sn-126	6.0×10^{-13}	3.8×10^{-13}		
I-129	7.2×10^{-16}	4.5×10^{-16}		
Cs-135	0	0		
Cs-137	1.7×10^{-13}	1.1×10^{-13}		
Pb-210	1.8×10^{-16}	1.1×10^{-16}		
Po-210	2.5×10^{-18}	1.6×10^{-18}		
Ra-226	5.0×10^{-13}	3.1×10^{-13}		
Ra-228	2.7×10 ⁻¹³	1.7×10 ⁻¹³		
Ac-227	1.2×10^{-13}	7.5×10^{-14}		

付表 9 生活圏評価に用いた外部被ばくに係る実効線量換算係数 (2/2)

	水	
核種	[(Sv • h ⁻¹)/(Bq • m ⁻	土壌(堆積物)
小公里	(SV II)/(BQ III)	$[(Sv \cdot h^{-1})/(Bq \cdot m^{-3})]$
Th-228	4.5×10^{-13}	2.8×10 ⁻¹³
Th-229	9.3×10 ⁻¹⁴	5.8×10^{-14}
Th-230	9.0×10 ⁻¹⁷	5.6×10 ⁻¹⁷
Th-232	3.8×10 ⁻¹⁷	2.4×10^{-17}
Pa-231	1.1×10 ⁻¹⁴	6.9×10^{-15}
Pa-233	6.1×10 ⁻¹⁴	3.8×10^{-14}
U-232	6.3×10 ⁻¹⁷	3.9×10 ⁻¹⁷
U-233	8.5×10 ⁻¹⁷	5.3×10 ⁻¹⁷
U-234	2.7×10^{-17}	1.7×10 ⁻¹⁷
U-235	5.1×10^{-14}	3.2×10 ⁻¹⁴
U-236	1.3×10^{-17}	8.1×10 ⁻¹⁸
U-238	7.5×10^{-15}	4.7×10 ⁻¹⁵
Np-236	2.3×10 ⁻¹⁴	1.4×10 ⁻¹⁴
Np-237	5.8×10 ⁻¹⁵	3.6×10 ⁻¹⁵
Pu-236	6.0×10^{-18}	3.8×10 ⁻¹⁸
Pu-238	6.6×10^{-18}	4.1×10 ⁻¹⁸
Pu-239	1.5×10^{-17}	9.4×10 ⁻¹⁸
Pu-240	7.1×10^{-18}	4.4×10^{-18}
Pu-241	1.4×10^{-18}	8.8×10 ⁻¹⁹
Pu-242	3.2×10^{-17}	2.0×10 ⁻¹⁷
Pu-244	9.9×10^{-14}	6.2×10^{-14}
Am-241	3.5×10^{-15}	2.2×10^{-15}
Am-242m	4.6×10 ⁻¹⁵	2.9×10 ⁻¹⁵
Am-243	6.2×10 ⁻¹⁴	3.9×10^{-14}
Cm-243	3.8×10 ⁻¹⁴	2.4×10 ⁻¹⁴
Cm-244	9.9×10 ⁻¹⁸	6.2×10 ⁻¹⁸
Cm-245	2.5×10 ⁻¹⁴	1.6×10 ⁻¹⁴
Cm-246	1.1×10 ⁻¹⁵	6.9×10 ⁻¹⁶
Cm-247	9.6×10 ⁻¹⁴	6.0×10 ⁻¹⁴
Cm-248	3.0×10^{-13}	1.9×10^{-13}

付属書 6-25 の修正対応表

修正前(誤)

解析ケースで取り扱う不確実性は、TRU等廃棄物処分場にのみ関係するものであるため、高レベル 放射性廃棄物処分場に起因する線量評価結果は、3.2 に示した基本ケースと同様である。

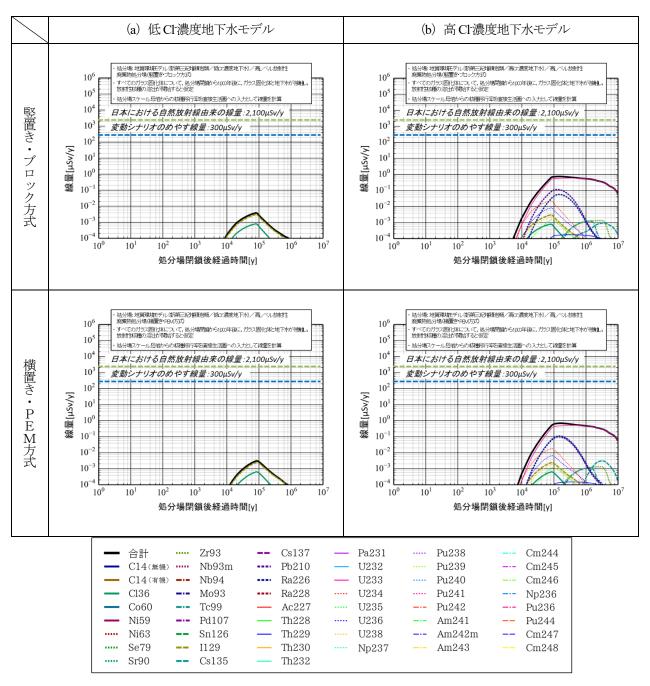


図 22 新第三紀堆積岩類の高レベル放射性廃棄物処分場に起因する線量と支配核種 (硝酸塩プルームの広がりに関する不確実性ケース)

付属書 6-26 の修正対応表

修正前(誤)



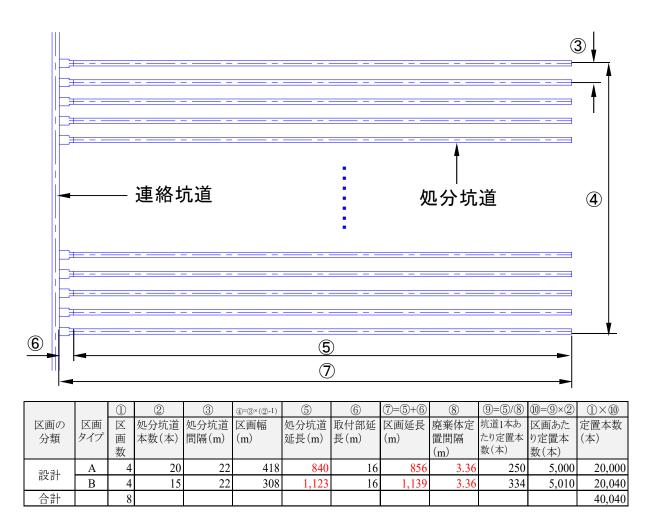
図 16 先新第三紀堆積岩類の高レベル放射性廃棄物処分場に起因する線量と支配核種 (ハル・エンドピース腐食速度不確実性ケース)

修正後(正)

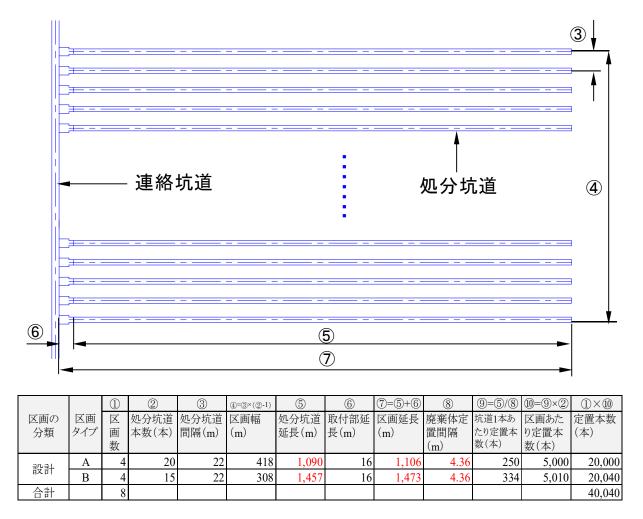
解析ケースで取り扱う不確実性は、TRU等廃棄物処分場にのみ関係するものであるため、高レベル 放射性廃棄物処分場に起因する線量評価結果は、3.2 に示した基本ケースと同様である。

「包括的技術報告書」 誤記等 修正対応表

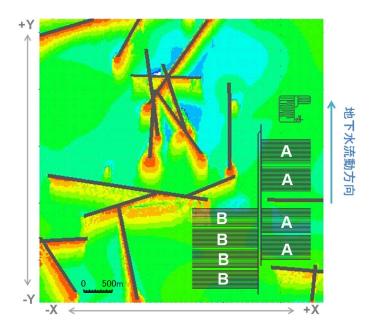
2024年1月12日 修正箇所

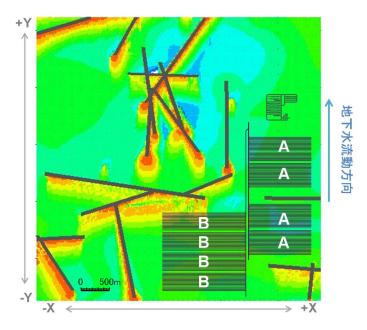

付属書

付属書 番号	ページ	位置 (行など)	修正前	修正後
4-52	付-4	付図5	後記の「付属書4-52 修正対応」参照	後記の「付属書4-52 修正対応」参照
4-52	付-4	付図6	付図5の処分区画の形状でレイアウトを作図	付図5の処分区画の形状の修正をレイアウトに反映
4-52	付-4	付図7	後記の「付属書4-52 修正対応」参照	後記の「付属書4-52 修正対応」参照
4-52	付-4	付図8	付図7の処分区画の形状でレイアウトを作図	付図7の処分区画の形状の修正をレイアウトに反 映

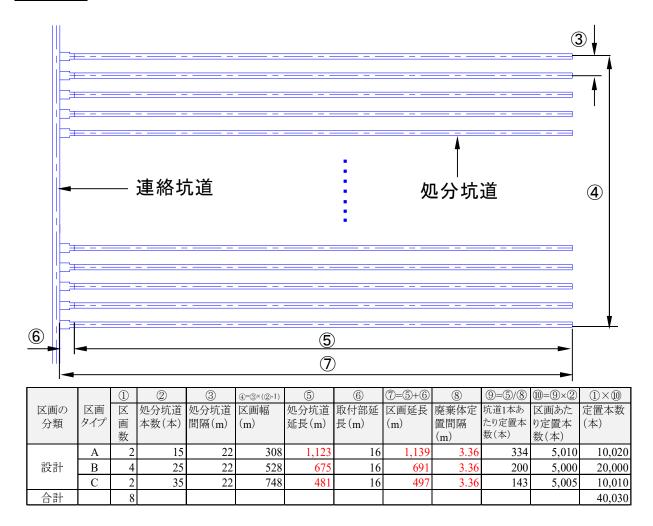

「包括的技術報告書」 誤記等 修正対応表

2024年1月12日

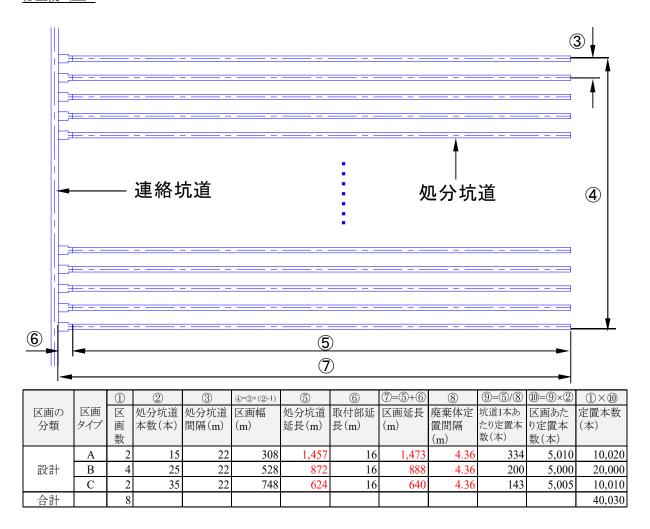

付属書4-52 付図 5、付図 6、付図 7、付図 8 の修正対応表(赤字が修正箇所)


付図 5 処分区画の形状(横置き・PEM 方式;深成岩類)

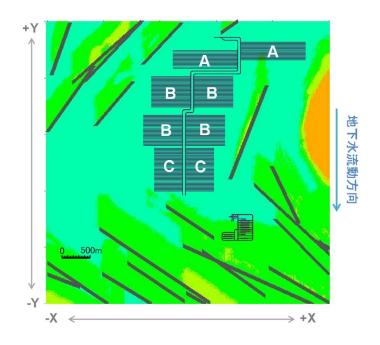
付図 5 処分区画の形状(横置き・PEM 方式; 深成岩類)

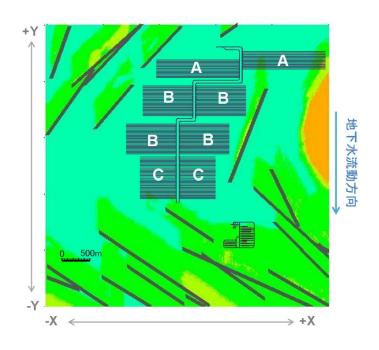


付図 6 地下施設レイアウト (横置き・PEM 方式;深成岩類)



付図 6 地下施設レイアウト (横置き・PEM 方式; 深成岩類)


修正前(誤)


付図 7 処分区画の形状(横置き・PEM 方式; 先新第三紀堆積岩類)

付図 7 処分区画の形状(横置き・PEM 方式; 先新第三紀堆積岩類)

付図 8 地下施設レイアウト (横置き・PEM 方式; 先新第三紀堆積岩類)

付図 8 地下施設レイアウト (横置き・PEM 方式; 先新第三紀堆積岩類)

2023年11月10日 修正箇所

付属書

1.1 /四 目				
付属書 番号	ページ	位置 (行など)	修正前	修正後
6-17	14	表9	後記の「付属書6-17 修正対応」参照	後記の「付属書6-17 修正対応」参照
6-17	20	表15	後記の「付属書6-17 修正対応」参照	後記の「付属書6-17 修正対応」参照
6-17	23	表18	後記の「付属書6-17 修正対応」参照	後記の「付属書6-17 修正対応」参照
6-19	20	下から2行目	処分場で <u>7</u> ×10 ⁻¹⁰ [m ² /s]	処分場で <u>8</u> ×10 ⁻¹⁰ [m ² /s]
6-19	20	最終行	処分場で <u>5</u> ×10 ⁻¹⁰ [m ² /s]	処分場で <u>6</u> ×10 ⁻¹⁰ [m ² /s]
6-19	21	表11	後記の「付属書6-19 修正対応」参照	後記の「付属書6-19 修正対応」参照
6-20	15	表6	後記の「付属書6-20 修正対応」参照	後記の「付属書6-20 修正対応」参照
6-20	23	表10 タイトルに記載の 単位	廃棄体パッケージ間充填材へのK _d [<u>kg/m³</u>]	廃棄体パッケージ間充填材へのK _d [<u>m³/kg</u>]
6-21	10	図4	図中、陰イオンに対する経験式 「Deanion= 1.9×10 ⁻¹² ・ ε ^{2.0} 」	図中、陰イオンに対する経験式 「Deanion= 1.9×10 ⁻¹⁴ ・ε ^{2.0} 」

2023年11月10日

付属書 6-17 表 9、表 15、表 18 の修正対応表(赤字が修正箇所)

修正前(誤)

表 9 深成岩類に対する緩衝材間隙水中の溶解度設定値(温度影響の不確実性ケース)

処分場	HLW					
	溶解度[mol/L]					
地下水	低 Cl 濃度	高 Cl 濃度				
C(無機)	8×10 ⁻³	5×10 ⁻³				
C(有機)	C (有	機)				
Cl	可溶性	可溶性				
Co	(評価対	対象外)				
Ni	(評価対	†象外)				
Se	3×10 ⁻⁶	2×10 ⁻⁶				
Sr	4×10 ⁻⁴	4×10 ⁻⁴				
Zr	2×10 ⁻⁸	2×10 ⁻⁸				
Nb	5×10 ⁻⁵	4×10 ⁻⁶				
Мо	(評価対	対象外)				
Tc	2×10 ⁻⁸	1×10 ⁻⁸				
Pd	(評価対	対象外)				
Sn	4×10 ⁻⁵	6×10 ⁻⁶				
I	可溶性	可溶性				
Cs	可溶性	可溶性				
Pb	2×10 ⁻⁶	4×10 ⁻⁶				
Ra	2×10 ⁻³	2×10 ⁻³				
Ac	可溶性	可溶性				
Th	3×10 ⁻⁶	9×10 ⁻⁷				
Pa	2×10 ⁻⁹	2×10 ⁻⁹				
U	4×10 ⁻⁵	3×10 ⁻⁵				
Np	2×10 ⁻⁶	8×10 ⁻⁷				
Pu	2×10 ⁻⁷	3×10 ⁻⁷				
Am	2×10 ⁻⁶	4×10 ⁻⁶				
Cm	2×10 ⁻⁶	4×10 ⁻⁶				

修正後(正)

表 9 深成岩類に対する緩衝材間隙水中の溶解度設定値(温度影響の不確実性ケース)

処分場	HLW					
	溶解度[mol/L]					
地下水	低 Cl 濃度	高 Cl-濃度				
C(無機)	8×10 ⁻¹	5×10 ⁻¹				
C(有機)	(評価対	†象外)				
Cl	可溶性	可溶性				
Co	(評価対	対象外)				
Ni	(評価対	対象外)				
Se	3×10 ⁻⁶	1×10 ⁻⁶				
Sr	4×10 ⁻²	4×10 ⁻²				
Zr	1×10 ⁻⁶	1×10 ⁻⁶				
Nb	2×10 ⁻³	1×10 ⁻⁴				
Мо	(評価対	付象外)				
Tc	5×10 ⁻⁷	5×10 ⁻⁷				
Pd	(評価対	付象外)				
Sn	6×10 ⁻⁴	7×10 ⁻⁵				
Ι	可溶性	可溶性				
Cs	可溶性	可溶性				
Pb	2×10 ⁻⁴	4×10 ⁻⁴				
Ra	8×10 ⁻²	8×10 ⁻²				
Ac	2×10 ⁻³	3×10 ⁻³				
Th	4×10 ⁻⁶	2×10 ⁻⁶				
Pa	2×10 ⁻⁷	2×10 ⁻⁷				
U	2×10 ⁻⁴	6×10 ⁻⁵				
Np	2×10 ⁻⁶	8×10 ⁻⁷				
Pu	2×10 ⁻⁶	3×10 ⁻⁶				
Am	2×10 ⁻⁵	4×10 ⁻⁵				
Cm	2×10 ⁻⁵	4×10 ⁻⁵				

表 15 深成岩類に対応する緩衝材間隙水中の溶解度設定値 (熱力学データの不確実性ケース)

処分場	HLW					
	溶解度[mol/L]					
地下水	低 Cl 濃度	高 Cl 濃度				
C(無機)	1×10 ⁻²	4×10 ⁻²				
C(有機)	(評価対	†象外)				
Cl	可溶性	可溶性				
Co	(評価対	†象外)				
Ni	(評価対	†象外)				
Se	1×10 ⁻⁶	3×10 ⁻⁸				
Sr	4×10 ⁻⁴	2×10 ⁻³				
Zr	2×10 ⁻⁸	2×10 ⁻⁷				
Nb	<mark>8</mark> ×10 ⁻⁵	2×10 ⁻⁷				
Мо	(評価対象外)					
Tc	2×10 ⁻⁸	5×10 ⁻⁸				
Pd	(評価対	対象外)				
Sn	7×10 ⁻⁵	3×10 ⁻⁶				
I	可溶性	可溶性				
Cs	可溶性	可溶性				
Pb	3×10 ⁻⁶	3×10 ⁻⁶				
Ra	2×10 ⁻³	8×10 ⁻³				
Ac	可溶性	可溶性				
Th	3×10 ⁻⁶	5×10 ⁻⁵				
Pa	2×10 ⁻⁹	8×10 ⁻⁹				
U	<mark>8</mark> ×10 ⁻⁵	7×10 ⁻⁴				
Np	3×10 ⁻⁶	4×10 ⁻⁵				
Pu	2×10 ⁻⁷	3×10 ⁻⁶				
Am	8×10 ⁻⁷	6×10 ⁻⁶				
Cm	8×10 ⁻⁷	6×10 ⁻⁶				

表 15 深成岩類に対応する緩衝材間隙水中の溶解度設定値 (熱力学データの不確実性ケース)

処分場	HLW				
	溶解度[mol/L]				
地下水	低 CI 濃度	高 Cl 濃度			
C(無機)	8×10 ⁻³	5×10 ⁻³			
C(有機)	(評価対	付象外)			
Cl	可溶性	可溶性			
Co	(評価対	対象外)			
Ni	(評価対	対象外)			
Se	3×10 ⁻⁶	2×10 ⁻⁶			
Sr	4×10 ⁻⁴	4×10 ⁻⁴			
Zr	2×10 ⁻⁸	2×10 ⁻⁸			
Nb	5×10 ⁻⁵	4×10 ⁻⁶			
Mo	(評価対	対象外)			
Tc	2×10 ⁻⁸	1×10 ⁻⁸			
Pd	(評価対	対象外)			
Sn	4×10 ⁻⁵	6×10 ⁻⁶			
Ι	可溶性	可溶性			
Cs	可溶性	可溶性			
Pb	2×10 ⁻⁶	4×10 ⁻⁶			
Ra	2×10 ⁻³	2×10 ⁻³			
Ac	可溶性	可溶性			
Th	3×10 ⁻⁶	9×10 ⁻⁷			
Pa	2×10 ⁻⁹	2×10 ⁻⁹			
U	4×10 ⁻⁵	3×10 ⁻⁵			
Np	2×10 ⁻⁶	8×10 ⁻⁷			
Pu	2×10 ⁻⁷	3×10 ⁻⁷			
Am	2×10 ⁻⁶	4×10 ⁻⁶			
Cm	2×10 ⁻⁶	4×10 ⁻⁶			

表 18 深成岩類に対応する TRU 等廃棄物の溶解度設定値 (熱力学データの不確実性ケース)

処分場	Gr.1, 4H		G	Gr.2		Gr.4L	
	溶解度[mol/L]		溶解度	[mol/L]	溶解度	[mol/L]	
地下水	低 CI 濃度	高 Cl 濃度	低 Cl 濃度	高 Cl 濃度	低 CI 濃度	高 CI 濃度	
C(無機)	(評価)	付象外)	(評価)	对象外)	(評価)	対象外)	
C(有機)	可溶性	可溶性	可溶性	可溶性	可溶性	可溶性	
Cl	可溶性	可溶性	可溶性	可溶性	可溶性	可溶性	
Со	2×10 ⁻⁵	2×10 ⁻⁵	2×10 ⁻⁵	2×10 ⁻⁵	1×10 ⁻⁵	2×10 ⁻⁵	
Ni	8×10 ⁻⁵	8×10 ⁻⁵	8×10 ⁻⁵	8×10 ⁻⁵	6×10 ⁻⁵	6×10 ⁻⁵	
Se	2×10 ⁻⁴	3×10 ⁻⁴	2×10 ⁻⁴	3×10 ⁻⁴	8×10 ⁻⁵	3×10 ⁻⁴	
Sr	1×10 ⁻⁴	2×10 ⁻⁴	1×10 ⁻⁴	2×10 ⁻⁴	9×10 ⁻⁵	2×10 ⁻⁴	
Zr	2×10 ⁻⁶	2×10 ⁻⁶	2×10 ⁻⁶	2×10 ⁻⁶	1×10 ⁻⁶	2×10 ⁻⁶	
Nb	2×10 ⁻¹	2×10 ⁻¹	2×10 ⁻¹	2×10 ⁻¹	2×10 ⁻¹	2×10 ⁻¹	
Mo	6×10 ⁻⁴	6×10 ⁻⁴	6×10 ⁻⁴	6×10 ⁻⁴	4×10 ⁻⁴	4×10 ⁻⁴	
Тс	4×10 ⁻⁶	4×10 ⁻⁶	4×10 ⁻⁶	4×10 ⁻⁶	3×10 ⁻⁶	3×10 ⁻⁶	
Pd	2×10 ⁻⁵	1×10 ⁻³	2×10 ⁻⁵	1×10 ⁻³	2×10 ⁻⁵	1×10 ⁻³	
Sn	2×10 ⁻¹	2×10 ⁻¹	2×10 ⁻¹	2×10 ⁻¹	1×10 ⁻¹	1×10 ⁻¹	
I	可溶性	可溶性	可溶性	可溶性	可溶性	可溶性	
Cs	可溶性	可溶性	可溶性	可溶性	可溶性	可溶性	
Pb	2×10 ⁻¹	2×10 ⁻¹	2×10 ⁻¹	2×10 ⁻¹	2×10 ⁻¹	2×10 ⁻¹	
Ra	6×10 ⁻⁴	8×10 ⁻⁴	6×10 ⁻⁴	8×10 ⁻⁴	5×10 ⁻⁴	7 ×10 ⁻⁴	
Ac	可溶性	可溶性	可溶性	可溶性	可溶性	可溶性	
Th	8×10 ⁻⁸	8×10 ⁻⁸	8×10 ⁻⁸	8×10 ⁻⁸	8×10 ⁻⁸	8×10 ⁻⁸	
Pa	1×10 ⁻⁹	1×10 ⁻⁹	1×10 ⁻⁹	1×10 ⁻⁹	1×10 ⁻⁹	1×10-9	
U	8×10 ⁻⁵	7×10 ⁻⁵	8×10 ⁻⁵	7×10 ⁻⁵	4×10 ⁻⁵	4×10 ⁻⁵	
Np	1×10 ⁻⁷	1×10 ⁻⁷	5×10 ⁻⁷	5×10 ⁻⁷	1×10 ⁻⁷	1×10 ⁻⁷	
Pu	2×10 ⁻¹⁰	2×10 ⁻¹⁰	3×10 ⁻⁸	3×10 ⁻⁸	2×10 ⁻¹⁰	2×10 ⁻¹⁰	
Am	5×10 ⁻¹⁰	5×10 ⁻¹⁰	7×10 ⁻¹⁰	7×10 ⁻¹⁰	5×10 ⁻¹⁰	5×10 ⁻¹⁰	
Cm	5×10 ⁻¹⁰	5 ×10 ⁻¹⁰	7×10 ⁻¹⁰	7×10 ⁻¹⁰	5×10 ⁻¹⁰	5×10 ⁻¹⁰	

表 18 深成岩類に対応する TRU 等廃棄物の溶解度設定値 (熱力学データの不確実性ケース)

処分場	Gr.1, 4H		Gr.2		Gr.4L	
	溶解度[mol/L]		溶解度	[mol/L]	溶解度	[mol/L]
地下水	低 CI 濃度	高 Cl 濃度	低 Cl 濃度	高 Cl 濃度	低 CI 濃度	高 CI 濃度
C(無機)	(評価)	付象外)	(評価対	対象外)	(評価対	対象外)
C(有機)	可溶性	可溶性	可溶性	可溶性	可溶性	可溶性
Cl	可溶性	可溶性	可溶性	可溶性	可溶性	可溶性
Со	8×10 ⁻⁶					
Ni	2×10 ⁻⁵					
Se	3×10 ⁻⁵	3×10 ⁻⁵	3×10 ⁻⁵	3×10 ⁻⁵	2×10 ⁻⁵	3×10 ⁻⁵
Sr	1×10 ⁻⁴	1×10 ⁻⁴	1×10 ⁻⁴	1×10 ⁻⁴	9×10 ⁻⁵	1×10 ⁻⁴
Zr	2×10 ⁻⁷					
Nb	5×10 ⁻²	5×10 ⁻²	5×10 ⁻²	5×10 ⁻²	4×10 ⁻²	4×10 ⁻²
Mo	4×10 ⁻⁴	4×10 ⁻⁴	4×10 ⁻⁴	4×10 ⁻⁴	3×10 ⁻⁴	3×10 ⁻⁴
Тс	1×10 ⁻⁶	1×10 ⁻⁶	1×10 ⁻⁶	1×10 ⁻⁶	8×10 ⁻⁷	7×10 ⁻⁷
Pd	5×10 ⁻⁶	5×10 ⁻⁶	5×10 ⁻⁶	5×10 ⁻⁶	4×10 ⁻⁶	4×10 ⁻⁶
Sn	4×10 ⁻²	4×10 ⁻²	4×10 ⁻²	4×10 ⁻²	3×10 ⁻²	3×10 ⁻²
I	可溶性	可溶性	可溶性	可溶性	可溶性	可溶性
Cs	可溶性	可溶性	可溶性	可溶性	可溶性	可溶性
Pb	6×10 ⁻²	6×10 ⁻²	6×10 ⁻²	6×10 ⁻²	5×10 ⁻²	5×10 ⁻²
Ra	8×10 ⁻⁴	8×10 ⁻⁴	8×10 ⁻⁴	8×10 ⁻⁴	6×10 ⁻⁴	6×10 ⁻⁴
Ac	可溶性	可溶性	可溶性	可溶性	可溶性	可溶性
Th	8×10 ⁻⁸					
Pa	1×10 ⁻⁹					
U	2×10 ⁻⁵	2×10 ⁻⁵	2×10 ⁻⁵	2×10 ⁻⁵	1×10 ⁻⁵	9×10 ⁻⁶
Np	1×10 ⁻⁷	1×10 ⁻⁷	5×10 ⁻⁷	5×10 ⁻⁷	1×10 ⁻⁷	1×10 ⁻⁷
Pu	2×10 ⁻¹⁰	2×10 ⁻¹⁰	3×10 ⁻⁸	3×10 ⁻⁸	2×10 ⁻¹⁰	2×10 ⁻¹⁰
Am	5×10 ⁻¹⁰	6×10 ⁻¹⁰	7×10 ⁻¹⁰	7×10 ⁻¹⁰	5×10 ⁻¹⁰	6×10 ⁻¹⁰
Cm	5×10 ⁻¹⁰	6×10 ⁻¹⁰	7×10 ⁻¹⁰	7×10 ⁻¹⁰	5×10 ⁻¹⁰	6×10 ⁻¹⁰

付属書 6-19 表 11 の修正対応表(赤字が修正箇所)

修正前(誤)

表 11 ひび割れたセメント系材料中での実効拡散係数 [m²/s]

媒体	間隙率ε	温度	温度による	実効拡散係数 [m²/s]	有効数字1桁にした
		[°C]	補正係数		設定値 [m²/s]
アルアドキリシャ		25	1	5 ×10 ⁻¹⁰	5×10 ⁻¹⁰
ひひ割れたセメント系材料	0.21	30	1.1	6×10 ⁻¹⁰	6×10 ⁻¹⁰
		45	1.5	7 ×10 ⁻¹⁰	8×10 ⁻¹⁰

表 11 ひび割れたセメント系材料中での実効拡散係数 [m²/s]

媒体	間隙率ε	温度	温度による	字为批类#60**** [2/-]	有効数字1桁にした
娱 俗		$[^{\circ}\!\mathbb{C}]$	補正係数	実効拡散係数 [m²/s]	設定値 [m²/s]
ひひ割れた		25	1	4.8×10 ⁻¹⁰	5×10 ⁻¹⁰
セメント系材料	0.21	30	1.1	5.3×10 ⁻¹⁰	6×10 ⁻¹⁰
セメント糸材料		45	1.5	7.4×10 ⁻¹⁰	8×10 ⁻¹⁰

付属書 6-20 表 6 の修正対応表(赤字が修正箇所)

修正前(誤)

表 6 Na 型ベントナイトに対する Sr, Cs, Ra の K_aのイオン強度による補正

						=======================================			
				深成岩類		新第三紀堆積岩類		先新第三紀堆積岩類	
地下水	<	蒸留水系	海水系	低 Cl 濃度	高 Cl ⁻ 濃度	低 CI 濃度	高 Cl ⁻ 濃度	低 Cl 濃度	高 Cl 濃度
イオン強 [mol/kg		0.026	0.62	0.21**	0.25**	0.21**	0.40**	0.20**	0.40**
	Sr	0.14	0.0039	0.014	0.011	0.014	0.0064	0.014	0.0065
K _d [m ³ /kg]	Ra	0.24	0.017	0.043	0.04	0.043	0.025	0.043	0.025
[III ^e /Kg]	Cs	0.19	0.032	0.059	0.054	0.059	0.041	0.060	0.041

※緩衝材間隙水のイオン強度の最大値

修正後(正)

表 6 Na 型ベントナイトに対する Sr, Cs, Ra の K_dのイオン強度による補正

			深成岩類		新第三紀堆積岩類		先新第三紀堆積岩類		
地下才	<	蒸留水系	海水系	低 Cl 濃度	高 Cl 濃度	低 Cl 濃度	高 Cl ⁻ 濃度	低 Cl 濃度	高 Cl ⁻ 濃度
イオン強 [mol/kg		0.026	0.62	0.21**	0.25**	0.21**	0.40**	0.20**	0.40*
**	Sr	0.14	0.0039	0.014	0.011	0.014	0.0064	0.014	0.0065
K _d [m ³ /kg]	Ra	0.24	0.017	0.043	0.037	0.043	0.025	0.043	0.025
[III ⁺ /Kg]	Cs	0.19	0.032	0.059	0.054	0.059	0.041	0.060	0.041

※緩衝材間隙水のイオン強度の最大値

2023年4月7日 修正箇所

付属書 番号	ページ	位置 (行など) 修正前		修正後	
6-14	4	⊠4	有限要素分割のイメージ図	解析に適用した有限要素分割の図	
6-28	9	上から3行目 (修正後は上から4行目)	改行の抜け	改行の追加	

2023年1月13日 修正箇所

付属書 番号	ページ	位置 (行など)	修正前	修正後
6-15	2	下から3行目	オーバーパック <u>やとの</u> PEM容器	オーバーパック <u>や</u> PEM容器
6-15	3	上から15行目	<u>個性</u> 要素	<u>構成</u> 要素

2022年10月28日 修正箇所

付属書

付属書				
付属書 番号	ページ	位置 (行など)	修正前	修正後
6-13	3	上から15行目	たとえば	例えば
6-13	6	表1,緩衝材真密度	乾燥密度1.6 Mg/m³(本編表 <u>4-4.8</u>)と間隙率より 設定。	乾燥密度 $1.6~\mathrm{Mg/m^3}$ (本編表 $4.4-8$)と間隙率より設定。
6-13	10	式(19)	記載なし	<u>ε^R : 廃棄体領域の間隙率[-]</u>
6-13	12	表2, 廃棄体パッケージ内お よび廃棄体パッケージ間の充 填材の真密度	廃棄体パッケージ内および廃棄体パッケージ間 の充填材の真密度 [<u>m³</u>]	廃棄体パッケージ内および廃棄体パッケージ間 の充填材の真密度 [kg/m³]
6-13	12	表2, 廃棄体領域の間隙率	廃棄体領域の間隙率	廃棄体領域の間隙率_[-]
6-13	12	表2,緩衝材真密度	乾燥密度1.6 Mg/m³(本編表 <u>4-4.8</u>)と間隙率より 設定。	乾燥密度 $1.6~{ m Mg/m}^3$ (本編表 $\underline{4.4-8}$)と間隙率より設定。
6-13	13	表3, 廃棄体領域の体積	1.2×10 ⁴	1.2×10 ⁴ (深成岩類,先新第三紀堆積岩類),1.5× 10 ⁴ (新第三紀堆積岩類)
6-13	13	表3,廃棄体パッケージ内お よび廃棄体パッケージ間の充 填材の真密度	廃棄体パッケージ内および廃棄体パッケージ間 の充填材の真密度 [<u>m³</u>]	廃棄体パッケージ内および廃棄体パッケージ間 の充填材の真密度 [kg/m³]
6-13	13	表3, 廃棄体領域の間隙率	廃棄体領域の間隙率	廃棄体領域の間隙率_[-]
6-13	13	表3,緩衝材真密度	乾燥密度1.6 Mg/m³(本編表 <u>4-4.8</u>)と間隙率より 設定。	乾燥密度 $1.6~\mathrm{Mg/m^3}$ (本編表 $4.4-8$)と間隙率より設定。
6-13	14	表4, 廃棄体領域の体積	1.8×10 ⁴	1.2×10 ³ (深成岩類,先新第三紀堆積岩類),1.3× 10 ³ (新第三紀堆積岩類)
6-13	14	表4, 廃棄体パッケージ内お よび廃棄体パッケージ間の充 填材の真密度	廃棄体パッケージ内および廃棄体パッケージ間 の充填材の真密度 [<u>m³</u>]	廃棄体パッケージ内および廃棄体パッケージ間 の充填材の真密度 [kg/m³]
6-13	14	表4, 廃棄体パッケージ内お よび廃棄体パッケージ間の充 填材の真密度	1.2×10 ³	2.6×10 ³
6-13	14	表4, 廃棄体領域の間隙率	廃棄体領域の間隙率	廃棄体領域の間隙率_[-]
6-13	14	表4,緩衝材真密度	乾燥密度1.6 Mg/m³(本編表 <u>4-4.8</u>)と間隙率より 設定。	乾燥密度 $1.6~{ m Mg/m}^3$ (本編表 $\underline{4.4-8}$)と間隙率より設定。
6-13	15	表5, 廃棄体領域の間隙率	廃棄体領域の間隙率	廃棄体領域の間隙率_[-]
6-13	15	表5,緩衝材真密度	乾燥密度1.6 Mg/m³(本編表 <u>4-4.8</u>)と間隙率より 設定。	乾燥密度 $1.6~\mathrm{Mg/m}^3$ (本編表 $4.4-8$)と間隙率より設定。
6-13	16	下から13行目	示す通り	示すとおり
6-13	17	上から11行目	以下の通り	以下のとおり
6-13	17	下から9行目	及び	および
6-13	18	式(33)	記載なし	<u>ε^R : 廃棄体領域の間隙率[-]</u>
6-13	19	表6, 廃棄体領域の体積	1.8×10 ³	1.8×10 ⁴
				•

付属書 番号	ページ	位置 (行など)	修正前	修正後
6-13	20	表7, 廃棄体領域の間隙率	廃棄体領域の間隙率	廃棄体領域の間隙率 <u>[-]</u>
6-13	20	表8, 廃棄体領域の間隙率	廃棄体領域の間隙率	廃棄体領域の間隙率 <u>[-]</u>
6-13	付B-9	付表B-9 タイトル	基本ケースにおける新第三紀堆積岩類のTRU等 廃棄物(緩衝材設置なし:グループ3,グループ 4L,閉じ込め期間0年)のマルチチャンネルモデ ルの透水量係数分布(ニアフィールドスケー ル)	基本ケースにおける新第三紀堆積岩類のTRU等廃棄物(緩衝材設定なし:グループ3,グループ4L,低CI濃度地下水、閉じ込め期間0年)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール) ※読者の利便性向上のため変更
6-13	付B-10	付表B-10 タイトル	基本ケースにおける新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L, <u>閉じ込め期間300年</u>)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール)	基本ケースにおける新第三紀堆積岩類のTRU等廃棄物(緩衝材設定なし:グループ3,グループ4L,低CI濃度地下水、閉じ込め期間300年、および高CI濃度地下水、閉じ込め期間0年・300年)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール) ※読者の利便性向上のため変更
6-13	付B-14	付表B-14 タイトル	基本ケースにおける先新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L,閉じ込め期間0年)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール)	基本ケースにおける先新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L,低CΓ濃度地下水、閉じ込め期間0年)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール) ※読者の利便性向上のため変更
6-13	付B-15	付表B-15 タイトル	基本ケースにおける先新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L,閉じ込め期間300年)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール)	基本ケースにおける先新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L,低CΓ濃度地下水、閉じ込め期間300年、および高CΓ濃度地下水、閉じ込め期間0年・300年)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール) ※読者の利便性向上のため変更
6-13	付B-24	付表B-24 タイトル	母岩の割れ目の連結性に関する不確実性ケースにおける新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L,閉じ込め期間0年)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール)	母岩の割れ目の連結性に関する不確実性ケースにおける新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L,低CT濃度地下水、閉じ込め期間0年)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール) ※読者の利便性向上のため変更
6-13	付B-25	付表B-25 タイトル	母岩の割れ目の連結性に関する不確実性ケースにおける新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L, <u>閉じ込め期間300年</u>)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール)	母岩の割れ目の連結性に関する不確実性ケースにおける新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L,低CI濃度地下水、閉じ込め期間300年、および高CI濃度地下水、閉じ込め期間0年・300年)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール) ※読者の利便性向上のため変更
6-13	付B-29	付表B-29 タイトル	母岩の割れ目の連結性に関する不確実性ケースにおける先新第三紀堆積岩類のTRU等廃棄物 (緩衝材設置なし:グループ3,グループ4L,閉じ込め期間0年)のマルチチャンネルモデルの透水量係数分布 (ニアフィールドスケール)	母岩の割れ目の連結性に関する不確実性ケースにおける先新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L,低 <u>CI濃度地下水</u> 関じ込め期間0年)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール) <u>※読者の利便性向上のため変更</u>
6-13	付B-30	付表B-30 タイトル	母岩の割れ目の連結性に関する不確実性ケースにおける先新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L, <u>閉じ込め期間300年</u>)のマルチチャンネルモデルの透水量係数分布(ニアフィールドスケール)	母岩の割れ目の連結性に関する不確実性ケースにおける先新第三紀堆積岩類のTRU等廃棄物(緩衝材設置なし:グループ3,グループ4L,低 CI濃度地下水、閉じ込め期間300年、および高CI 濃度地下水、閉じ込め期間0年・300年)のマル チチャンネルモデルの透水量係数分布(ニアフィールドスケール) ※読者の利便性向上のため変更

2022年9月22日 修正箇所

要約

章	ページ	位置 (行など)	修正前 (誤)	修正後 (正)
	16			各シナリオのめやす線量を示す点線または領域 の位置を正しい目盛り位置に修正

2022年5月17日 修正箇所

概要編

章	ページ	位置 (行など)	修正前 (誤)	修正後(正)
	97	表中「核種移行解析上の 取り扱い(基本ケースとの対 比)」の列の下から15行目	ガラス固化 <u>対</u>	ガラス固化 <u>体</u>
	107	下から13行目	6.2.6項 <u>」</u> (1)	6.2.6項(1)

	长編					
章	ページ	位置 (行など)	修正前 (誤)	修正後(正)		
5	i	上から4行目 (「5.1.1 安全評価シナリオ の作成の考え方」のページ番 号)	5- <u>1</u>	5- <u>2</u>		
6	iii	上から13行目	図6.4-25 先新第三紀堆積岩類の処分場に起因する線量と支配核種	図6.4-25 先新第三紀堆積岩類の処分場に起因する線量と支配核種 <u>(基本ケース)</u>		
6	iv	上から5行目		表6.1-4 安全評価に用いる対象核種と放射能インベントリ (TRU 等廃棄物)		
6	iv	下から5行目	表 6.4 -1 ニアフィールドスケールにおける簡略化 モデルに対する THMC 状態と 核種移行パラメー タの設定 $(1/2)$			
6	5	表外脚注の下から1行目	グループ 4H (ドラム缶) <u>)</u>	グループ 4H (ドラム缶)		
6	42	表中「シナリオで考慮すべき 不確実性」の列の上から2行 目		<u>埋め戻し</u> 材間の		
6	47	上から4行目	<u>取り付け</u> 坑道	<u>取付</u> 坑道		
6	61	下から7行目	セメント材料	セメント <u>系</u> 材料		
6	66	表中「核種移行解析上の 取り扱い」の列の下から10行 目	ガラス固化 <u>対</u>	ガラス固化 <u>体</u>		
6	67	表中「核種移行解析上の取り 扱い」列の構成要素「PEM容 器」		フォントサイズ10pt		
6	67	表中「最も確からしい状態」 列の構成要素「鋼製支保工」	埋戻し材	埋め戻し材		
6	70	表中「最も確からしい状態」 列の構成要素「緩衝材」下か ら20行目	<u>吹付</u> コンクリート	<u>吹付け</u> コンクリート		
6	70	表中「最も確からしい状態」 列の構成要素「緩衝材」下か ら12行目	<u>吹付</u> コンクリート	<u>吹付け</u> コンクリート		
6	79	表中「核種移行解析上の 取り扱い(基本ケースとの対 比)」の列の上から9行目	オーバーパックや <u>キャニスター</u>	オーバーパックや <u>キャニスタ</u>		

6	80	表中「核種移行解析上の 取り扱い(基本ケースとの対 比)」の列の下から16行目	ガラス固化 <u>対</u>	ガラス固化 <u>体</u>
6	96	下から3行目	まとめらている	まとめら <u>れ</u> ている
6	140	図の見出し	図6.4-25 先新第三紀堆積岩類の処分場に起因する線量と支配核種	図6.4-25 先新第三紀堆積岩類の処分場に起因する線量と支配核種 <u>(基本ケース)</u>
7	41	上から13行目	行頭のインデントにずれ	行頭のインデントを修正
7	42	上から13行目	行頭のインデントにずれ	行頭のインデントを修正
7	46	上から13行目	「μ」のフォントがMS 明朝	「μ」のフォントをTimes New Romanに修正
7	46	上から17行目	「μ」のフォントがMS 明朝	「μ」のフォントをTimes New Romanに修正
7	46	上から21行目	「μ」のフォントがMS 明朝	「μ」のフォントをTimes New Romanに修正
7	60	上から2行目	行頭のインデントにずれ	行頭のインデントを修正
7	62	参考文献6	(2021年1月12日閲覧) <u></u>	(2021年1月12日閲覧) <u>.</u>
7	65	参考文献54,55	著者名がすべて大文字	先頭文字以外を小文字に修正
7	65	参考文献55	P. Smith and F. Neall eds.	P. Smith and F. Neall (eds.)
7	66	参考文献56	文献タイトルがすべて大文字	先頭文字以外を小文字に修正
7	66	参考文献62	(2021年1月12日閲覧) <u>、</u>	(2021年1月12日閲覧) <u>.</u>
7	66	参考文献64 (修正後は参考文献63)	書誌情報の末尾とピリオドとの間に不要な空白 あり	不要な空白を削除
7	_	参考文献63以降	参考文献49と63が重複	参考文献63を消去し、64以降の文献番号を1つず つ繰り上げ

付属書 番号	ページ	位置 (行など)	修正前 (誤)	修正後(正)
3-14	4	下から8行目	<u>新第三紀堆積岩類</u> の分布域における	<u>花崗岩類</u> の分布域における
3-34	6	上から2行目	図 <u>7</u>	図 <u>6</u>
3-34	6	図の見出し	図 <u>7</u> ベイズ法を用いた東北日本における火山の 発生確率	図 <u>6</u> ベイズ法を用いた東北日本における火山の 発生確率
3-34	7	上から8行目	(表 1, 図 <u>6</u>)	(表 1,図 <u>7</u>)
3-34	7	上から8行目	なお,図 <u>6</u> 中に四角で示した	なお,図 <u>7</u> 中に四角で示した
3-34	8	上から9行目	図 <u>6</u>	図 <u>7</u>
3-34	8	図の見出し	図 <u>6</u> 100万年間の火山の発生確率に基づくプロジェクト・リスク	図 <u>7</u> 100万年間の火山の発生確率に基づくプロジェクト・リスク
3-34	8	図 6 (修正後は図7)	地点名の文字の欠落: <u>WC</u> , <u>EC</u>	地点名の文字の欠落を修正: <u>WCB/8</u> , <u>ECF/12</u>

2021年10月28日 修正箇所

本編

本編			T	<u> </u>
章	ページ	位置 (行など)	修正前(誤)	修正後(正)
2	11	上から1行目	数十万年オーダーで継続していること <u>[23]</u>	数十万年オーダーで継続していること <u>[22]</u>
3	20	上から4行目	<u>にで</u> 述べたように	<u>で</u> 述べたように
4	17	表 4.2-3	後記の「本編第4章 表4.2-3の修正対応表」参照	後記の「本編第4章 表4.2-3の修正対応表」参照
6	26	下から4行目	右記の一文が脱落	各構成要素について、安全機能が期待される時間スケールを図 6.3-2に示す。
6	63	上から16行目	段落の最初で一文字下げが行われていない	段落の最初を一文字下げへ修正
6	136	下から1~3行目	また、C-14 が深成岩類の処分場全体の初期の線量に寄与しないのは、処分場スケールの母岩における核種移行距離が長く、この間に放射性崩壊によって十分減衰することによる。	また、C-14が深成岩類の処分場全体の初期の線量に寄与しないのは、処分場スケールの母岩における核種移行距離が長く、母岩基質へのマトリクス拡散などにより移行が遅延したことによる。
6	161	図6.4-32	②の記載「噴出物(火山灰)として地表に堆積し,既存の土壌と均一に混合する。混合した土地で農作業従事者が生活して被ばくすることを想定」	②の記載「噴出物(火山灰)として地表に堆積 し、 <u>地表の放射性核種を含まない</u> 既存の土壌と 均一に混合する。混合した土地で農作業従事者 が生活して被ばくすることを想定」
6	170	下から2行目と3行目の間 (修正後は下から 3行目と4行目の間)	不要な改行あり	不要な改行を削除
6	付-24	図の見出し	付表 <u>6-10</u>	付表 <u>6-11</u>
7	ii	上から12行目	文字列(「表7.2-1」)の開始位置にずれ	文字列(「表7.2-1」)の開始位置のずれを修正
7	13	上から11~12行目		溶接欠陥が生じにくい溶接条件の最適化や、溶接技術に応じた溶接部の品質管理方法について引き続き検討を進めている。
7	26	上から15行目と16行目の間	不要な改行あり	不要な改行を削除
7	26	上から17行目と18行目の間	不要な改行あり	不要な改行を削除
7	26	上から21行目と22行目の間	不要な改行あり	不要な改行を削除
7	29 (修正後は 28ページ)	上から13~14行目	TRU等廃棄物処分場については処分坑道間に相 当する体積とし,	TRU等廃棄物処分場については <u>処分場端部に位</u> 置する処分坑道 <u>の</u> 間に相当する体積とし,
7	30 (修正後は 29ページ)	下から9行目	「(図)7.2-6」のフォントがMSゴシック	「(図)7.2-6」のフォントをTimes New Romanに 修正
7	30 (修正後は 29ページ)	下から4行目	「(図)7.2-6」のフォントがMSゴシック	「(図)7.2-6」のフォントをTimes New Romanに 修正
7	右記参照	右記参照	p.33の下から2行目に 「これらの事例や考え方については 付属書7-5に まとめている。」と記載	「これらの事例や考え方については 付属書7-5に まとめている。」の記載位置をp.31の上から11行 目に修正
7	33 (修正後は 32ページ)	下から17行目 (修正後は下から16行目)	緩衝材の安全機能	緩衝材 <u>や母岩</u> の安全機能
	i .	<u> </u>	<u> </u>	I.

7	33 (修正後は 32ページ)	下から14行目 (修正後は下から13行目)	岩盤に作用したものの	<u>粘土鉱物を含む</u> 岩盤に作用したものの
7	34 (修正後は 33ページ)	下から8行目	先 <u>進</u> 第三紀	先 <u>新</u> 第三紀
7	67 (修正後は 66ページ)	上から5行目	OEC <u>E</u> /NEA ホームページ	OEC <u>D</u> /NEA ホームページ
7	67 (修正後は 66ページ)	最終行	OEC <u>E</u> /NEA ホームページ	OEC <u>D</u> /NEA ホームページ
7	68 (修正後は 67ページ)	上から3行目	OEC <u>E</u> /NEA ホームページ	OEC <u>D</u> /NEA ホームページ
用語集	21	上から2行目	中 <u>性</u> 代	中生代

付属書 番号	ページ	位置 (行など)	修正前(誤)	修正後(正)
4-42	8	上から4行目と5行目の間	不要な改行あり	不要な改行を削除
4-42	10	上から6行目と7行目の間	不要な改行あり	不要な改行を削除
4-52	9	図14	後記の「付属書4-52 図14の修正対応表」参照	後記の「付属書4-52 図14の修正対応表」参照
4-64	19	上から1行目	竪置き・ブロック方式と横置き・PEM方式の恒 常湧水量の比較および内訳を <u>図18</u> に示す。	竪置き・ブロック方式と横置き・PEM方式の恒常湧水量の比較および内訳を <u>図20</u> に示す。
4-64	20	表14	後記の「付属書4-64 修正対応」参照	後記の「付属書4-64 修正対応」参照
4-64	21	図22	後記の「付属書4-64 修正対応」参照	後記の「付属書4-64 修正対応」参照
4-64	22	表15	後記の「付属書4-64 修正対応」参照	後記の「付属書4-64 修正対応」参照
4-64	22	下から4行目	新第三紀堆積岩類モデルでは透水係数が小さい ため,	<u>先</u> 新第三紀堆積岩類モデルでは透水係数が小さいため、
4-64	23	表16	後記の「付属書4-64 修正対応」参照	後記の「付属書4-64 修正対応」参照
6-13	6	表1	$[g/m^2/y]$	$[g/m^2/\underline{d}]$
6-13	6	表1	間隙水中の拡散係数[m²/ <u>y</u>]	間隙水中の拡散係数[m²/ <u>s</u>]
6-13	6	表1	<u>付属書6-19参照</u> 。	実効拡散係数(付属書6-19)と間隙率より設定。
6-13	8	上から8行目	溶解度の分配において考慮する同位体存在比は ガラス <u>固化体</u> を	溶解度の分配において考慮する同位体存在比は <u>廃棄体</u> を
6-13	9	上から7行目	右記の一文が脱落	なお、考慮した結果、移流・分散は無視できる ので、式(14)からは移流・分散は除外した。
6-13	17	下から10行目	式(31)では <u>緩衝材</u> 内側の廃棄体領域における	式 (31) では <u>構造躯体</u> 内側の廃棄体領域における

6-13	17	下から8行目	右記の一文が脱落	なお、考慮した結果、移流・分散は無視できる ので、式(31)からは移流・分散は除外した。
6-13	18	下から5行目	緩衝材外側のEDZを通過する地下水流量を用いる	<u>構造躯体</u> 外側のEDZを通過する地下水流量を用いる
6-13	18	式(38)	$V^M \frac{\partial A^M_{ij}}{\partial t} = V^R A^R_{ij} - V^M \lambda_{ij} A^M_{ij} + V^M \lambda_{IJ} A^M_{IJ} - QC^M_{ij}$	$V^{M} \frac{\partial A^{M}_{ij}}{\partial t} = -SD^{M}_{pi} \frac{\partial C^{M}_{ij}}{\partial r} - V^{M} \lambda_{ij} A^{M}_{ij} + V^{M} \lambda_{IJ} A^{M}_{IJ} - QC^{M}_{ij}$
6-13	22	式(43)	$R_n^{\mathrm{m}} = 1 + \frac{\rho^{\mathrm{m}} K d_n^{\mathrm{m}}}{\theta^{\mathrm{m}}}$	$R_n^{\mathrm{m}} = 1 + \frac{\rho_d^m K d_n^{\mathrm{m}}}{\theta^{\mathrm{m}}}$
6-13	22	下から7行目 (修正後は下から6行目)	岩石基質部の乾燥密度 [kg/m](= $\frac{\theta^m}{\rho}$ ρ^m)	岩石基質部の乾燥密度 [kg/m³](= <u>(1-θ^m)</u> ρ ^m)
6-13	22	下から6行目 (修正後は下から5行目)	岩石基質部の真密度 [kg/ <u>m</u>]	岩石基質部の真密度 [kg/ <u>m</u> ³]
6-13	23	下から8行目	岩石基質部の乾燥密度[kg/m³] (= <u>θ</u> ^p ρ ^p)	岩石基質部の乾燥密度[kg/m³] (= <u>(1-θ^p)</u> ρ ^p)
6-13	付A-5	上から1行目	2.3 <u>半径</u>	2.3 構成要素のサイズ
6-13	付A-5	上から2行目	EDZ流量の算出に当たって使用した <u>透水係数</u> とそ の設定根拠を	EDZ 流量の算出に当たって使用した <u>構成要素のサイズ</u> とその設定根拠を
6-13	付A-8	上から1行目	3. EDZの算出結果	3. EDZ <u>流量</u> の算出結果
6-13	付C-1	付表C-1	後記の「付属書6-13 付表C-1の修正対応表」参照	後記の「付属書6-13 付表C-1の修正対応表」参照
6-27	1	図1	②の記載「噴出物(火山灰)として地表に堆積し,既存の土壌と均一に混合する。 混合した土地で農作業従事者が生活して被ばくすることを想定」	②の記載「噴出物(火山灰)として地表に堆積 し、 <u>地表の放射性核種を含まない</u> 既存の土壌と 均一に混合する。 混合した土地で農作業従事 者が生活して被ばくすることを想定」
6-27	5	表2のρの値	1.6×10 <u>-</u> 6	1.6×10 ¹²
6-28	6	上から5行目	mol/m ² _y	mol/m ² / <u>y</u>
6-28	6	上から15行目と16行目 (修正後は上から15行目)	mol/m ² <u>y</u>	mol/m ² / <u>y</u>
7-3	39	ヘッダー	不要なヘッダーあり	不要なヘッダーを削除

本編第4章 表4.2-3の修正対応表(赤字が修正箇所)

修正前(誤)

表 4.2-3 閉鎖前の安全性に関する安全機能と構成要素の関係(一般労働安全)

安全確保の基本概念	安全機能	構成要素			
	換気能力	坑道の換気経路, 換気設備(冷房設備を含む)			
作業環境の維持	排水能力	坑道の排水経路, 排水設備			
	照明能力	坑道の照明設備			
	防火対策	防火設備,消火設備			
労働災害の発生・拡大	坑道の力学的安定性	支保工			
の防止	そのほかの労働災害 防止対策	落下・転倒防止装置,非常用貯水槽			
緊急時の避難経路の確保 避難経路の確保		アクセス坑道 (入気用立坑を避難経路とする),連絡 坑道,緊急待避所,風門,通信・連絡設備			

表 4.2-3 閉鎖前の安全性に関する安全機能と構成要素の関係 (一般労働安全)

安全確保の 基本概念	安全機能		構成要素	
		防火対策	防火設備,消火設備	
	労働災害の発生・	坑道の力学的安定性	支保工	
労働災害防止	拡大の防止	そのほかの労働災害 防止対策	落下・転倒防止装置,非常用貯水槽	
	緊急時の避難経路	その確保	アクセス坑道 (入気用立坑を避難経路とする), 連絡坑道,緊急待避所,風門,通信・連絡設備	
		換気能力	坑道の換気経路,換気設備(冷房設備を含む)	
作業環境維持	作業環境の維持	排水能力	坑道の排水経路, 排水設備	
		照明能力	坑道の照明設備	

修正前 (誤)

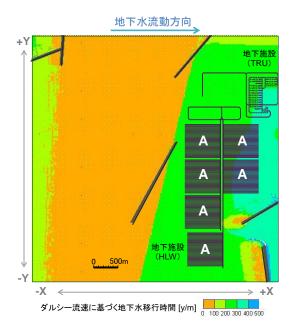


図 14 地下施設レイアウト (先新第三紀堆積岩類; 横置き・PEM 方式)

※先新第三紀堆積岩類に対するレイアウト図を掲載すべきところを新第三紀堆積岩類に対するレイアウト図を掲載していた。

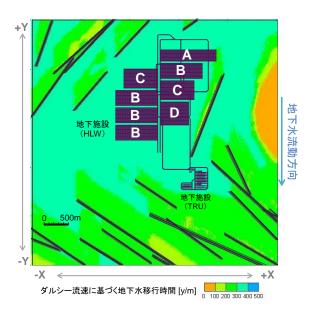


図 14 地下施設レイアウト (先新第三紀堆積岩類; 横置き・PEM 方式)

付属書 4-64 表 14, 表 15, 表 16 及び図 22 の修正対応

(1) 表 14 の修正

修正前_	(誤)						/ 誤記① (単位:m³/min)
			5	ブラウト幅 [m	i]	/	
	坑道	0	2.0	3.0	4.0	5.0	備考
	立坑	1.47	1.47	1.47	1.47	1 .47	グラウトは施工しない
	斜坑	13.64	3.74	2.41	1.83	/1.51	
	処分坑道Gr.1	0.10	0.03	0.02	0.02	0.01	連接本数 1
	処分坑道Gr.2	0.25	0.13	0.09	0.07	0.06	連接本数 誤記②
	処分坑道Gr.3	0.20	0.09	0.06	0.05	0.04	連接本数
	処分坑道Gr.4(L)ドラム缶	0.24	0.09	0.06	0.05	0.04	連接本数:2
水平坑道	処分坑道Gr.4(L)角型容器	0.09	0.03	0.02	0.02	0.01	建接本数:1
	処分坑道Gr.4(H)ドラム缶	0.10	0.03	0.02	0.02	0.02	連接本数:1
	<u>処分坑道Gr.4(H)ハル缶・インナーバレル</u>	0.17	0.06	0.04	0.03	0.03	連接本数:2
	小計	1.12	0.42	0.29	0.22	0.19	
	取付坑道	0.71	0.11	0.10	0.08	0.07	
	連絡坑道	2.39	0.44	0.36	0.31	0.27	
	計(恒常湧水量)	19.33	6.18	4.63	3.91	3.51	
	設計排水量	57.99	18.54	13.89	11.73	10.53	恒常湧水量×3

誤記①:水平坑道のうち各処分坑道からの湧水量の表示値の合計と小計の表示値があっていなかった。処分坑道からの湧水量を小数点第二位で切り上げた数字で表示していたため、数字を丸めた分、合計値に差が出たことが原因。処分坑道からの湧水量を小数点以下第三位まで表示し、小計を再計算した。

誤記②:上記の変更を行ったうえで、小計を再計算した結果、グラウト幅 5.0 m の小計の値、計(恒常湧水量)及び設計排水量の計算値も変更となった

修正後(正)

(単位:m³/min)

			グ				
	坑道	0	2.0	3.0	4.0	5.0	備考
	立坑	1.47	1.47	1.47	1.47	1.47	グラウトは施工しない
	斜坑	13.64	3.74	2.41	1.83	1.51	
	処分坑道Gr.1	0.094	0.026	0.017	0.013	0.010	連接本数:1
	処分坑道Gr.2	0.250	0.121	0.088	0.070	0.058	連接本数:5
	処分坑道Gr.3	0.199	0.082	0.057	0.045	0.037	連接本数:3
	処分坑道Gr.4(L)ドラム缶	0.232	0.084	0.057	0.044	0.036	連接本数:2
水平坑道	処分坑道Gr.4(L)角型容器	0.086	0.022	0.014	0.011	0.009	連接本数:1
	処分坑道Gr.4(H)ドラム缶	0.095	0.028	0.018	0.013	0.011	連接本数:1
	処分坑道Gr.4(H)ハル缶・インナーハ`レル	0.162	0.054	0.036	0.028	0.023	連接本数:2
	小計	1.12	0.42	0.29	0.22	0.18	
	取付坑道	0.71	0.11	0.10	0.08	0.07	
	連絡坑道	2.39	0.44	0.36	0.31	0.27	
	計(恒常湧水量)		6.18	4.63	3.91	3.50	
	設計排水量	57.99	18.54	13.89	11.73	10.50	恒常湧水量×3

(2) 表 15 の修正

修正前 (誤)

誤記③

(単位:m³/min)

			グラウト幅 [m]					
	坑道	0	2.0	3.0	4.0	5.0	備考	
	立坑	0.06	0.06	0.06	0.06	0.06	グラウトは施工しない	
	斜坑	0.60	0.46	0.39	0.35	0.31		
	処分坑道Gr.1	0.03	0.02	0.02	0.02	0.02	連接本数∶1	
	処分坑道Gr.2	0.05	0.05	0.04	0.04	0.04	連接本数∶6	
	処分坑道Gr.3	0.04	0.04	0.03	0.03	0.03	連接本数:3	
	処分坑道Gr.4(L)ドラム缶	0.04	0.03	0.03	0.03	0.03	連接本数:3	
水平坑道	処分坑道Gr.4(L)角型容器	0.02	0.02	0.02	0.02	0.02	連接本数∶1	
	処分坑道Gr.4(H)ドラム缶	0.03	0.03	0.03	0.02	0.02	連接本数∶1	
	処分坑道Gr.4(H)ハル缶・インナーバレル	0.03	0.02	0.02	0.02	0.02	連接本数:2	
-	小計	0.20	0.18	0.16	0.15	0.14		
	取付坑道	0.15	0.12	0.10	0.09	0.08		
	連絡坑道	0.64	0.52	0.46	0.42	0.39		
	計(恒常湧水量)	1.65	1.34	1.17	1.07	0.98		
	設計排水量	4.95	4.02	3.51	3.21	2.94	恒常湧水量×3	

誤記③: 水平坑道のうち各処分坑道からの湧水量の表示値の合計と小計の表示値があっていなかった。処分坑道からの湧水量を小数点第二位で切り上げた数字で表示していたため、数字を丸めた分、合計値に差が出たことが原因。処分坑道からの湧水量を小数点以下第三位まで表示し、小計を再計算した。

修正後(正)

(単位:m³/min)

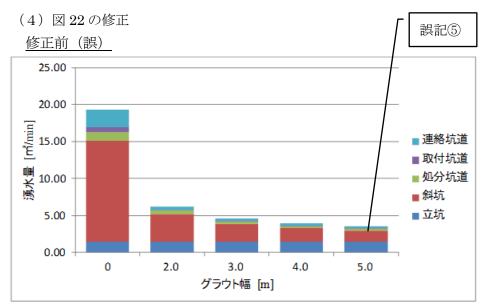
		グ		(- <u> </u> <u> </u> <u> </u> : III / IIIII/			
	坑道	0	2.0	3.0	4.0	5.0	備考
	立坑	0.06	0.06	0.06	0.06	0.06	グラウトは施工しない
	斜坑	0.60	0.46	0.39	0.35	0.31	
	処分坑道Gr.1	0.021	0.018	0.016	0.015	0.013	連接本数:1
	処分坑道Gr.2	0.048	0.042	0.039	0.036	0.034	連接本数:6
	処分坑道Gr.3	0.035	0.031	0.028	0.026	0.024	連接本数:3
	処分坑道Gr.4(L)ドラム缶	0.032	0.028	0.025	0.023	0.022	連接本数:3
水平坑道	処分坑道Gr.4(L)角型容器	0.017	0.015	0.013	0.012	0.011	連接本数:1
	処分坑道Gr.4(H)ドラム缶	0.028	0.024	0.021	0.019	0.018	連接本数:1
	処分坑道Gr.4(H)ハル缶・インナーハ゛レル	0.023	0.020	0.018	0.016	0.015	連接本数:2
	小計	0.20	0.18	0.16	0.15	0.14	
	取付坑道	0.15	0.12	0.10	0.09	0.08	
	連絡坑道	0.64	0.52	0.46	0.42	0.39	
	計(恒常湧水量)	1.65	1.34	1.17	1.07	0.98	
	設計排水量	4.95	4.02	3.51	3.21	2.94	恒常湧水量×3

(3) 表 16 の修正

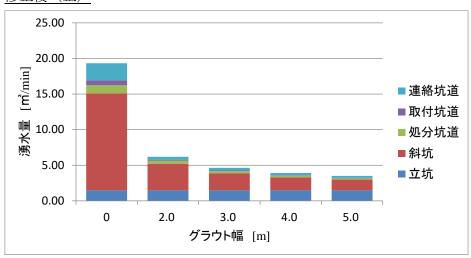
修正前 (誤)

誤記④

(単位:m³/min)


			グラウト幅 [m]					
	坑道	0	2.0	3.0	4.0	5.0	備考	
	立坑	0.17	0.17	0.17	0.17	0.17	グラウトは施工しない	
	斜坑	1.63	1.34	1.18	1.06	0.98		
	処分坑道Gr.1	0.03	0.03	0.03	0.03	0.02	連接本数∶1	
	処分坑道Gr.2	0.06	0.06	0.05	0.05	0.05	連接本数:5	
	処分坑道Gr.3	0.05	0.04	0.04	0.04	0.04	連接本数:3	
	処分坑道Gr.4(L)ドラム缶	0.06	0.05	0.05	0.04	0.04	連接本数:2	
水平坑道	処分坑道Gr.4(L)角型容器	0.03	0.03	0.02	0.02	0.02	連接本数∶1	
	処分坑道Gr.4(H)ドラム缶	0.03	0.03	0.03	0.03	0.02	連接本数∶1	
	処分坑道Gr.4(H)ハル缶・インナーハ・レル	0.04	0.04	0.03	0.03	0.03	連接本数:2	
	小計	0.27	0.24	0.22	0.21	0.20		
	取付坑道	0.22	0.18	0.16	0.15	0.14		
	連絡坑道	0.72	0.58	0.55	0.53	0.51		
	計(恒常湧水量)	3.01	2.51	2.28	2.12	2.00		
	設計排水量	9.03	7.53	6.84	6.36	6.00	恒常湧水量×3	

誤記④:水平坑道のうち各処分坑道からの湧水量の表示値の合計と小計の表示値があっていなかった。処分坑道からの湧水量を小数点第二位で切り上げた数字で表示していたため、数字を丸めた分、合計値に差が出たことが原因。処分坑道からの湧水量を小数点以下第三位まで表示し、小計を再計算した。


修正後(正)

(単位:m³/min)

グラウト					n]		(- <u> </u> <u> </u> <u> </u> <u> </u> :
	坑道	0	2.0	3.0	4.0	5.0	備考
	立坑	0.17	0.17	0.17	0.17	0.17	グラウトは施工しない
	斜坑	1.63	1.34	1.18	1.06	0.98	
	処分坑道Gr.1	0.028	0.025	0.023	0.021	0.020	連接本数:1
	処分坑道Gr.2	0.055	0.051	0.047	0.045	0.043	連接本数:5
	処分坑道Gr.3	0.044	0.040	0.037	0.035	0.033	連接本数:3
	処分坑道Gr.4(L)ドラム缶	0.051	0.046	0.042	0.040	0.037	連接本数:2
水平坑道	処分坑道Gr.4(L)角型容器	0.026	0.023	0.020	0.019	0.018	連接本数:1
	処分坑道Gr.4(H)ドラム缶	0.029	0.025	0.023	0.022	0.020	連接本数:1
	処分坑道Gr.4(H)ハル缶・インナーハ゛レル	0.036	0.032	0.029	0.027	0.026	連接本数:2
	小計	0.27	0.24	0.22	0.21	0.20	
	取付坑道	0.22	0.18	0.16	0.15	0.14	
	連絡坑道	0.72	0.58	0.55	0.53	0.51	
	計(恒常湧水量)	3.01	2.51	2.28	2.12	2.00	
	設計排水量	9.03	7.53	6.84	6.36	6.00	恒常湧水量×3

誤記⑤: 表 14 のグラウト幅 5.0 m の条件における処分坑道の小計値が異なっていたため、グラフの該当部を修正。

修正前 (誤)

付表 C-1 基本ケースにおける深成岩類処分場の処分場スケールのマルチチャンネルモデルの 透水量係数分布

	<u> </u>		
No.	透水量係数(対数値)log ₁₀ T	透水量係数T[m2/s]	チャンネル確率p
1	-15.20	8.9E-16	0.0E+00
2	-14.90	1.8E-15	0.0E+00
3	-14.60	3.6E-15	0.0E+00
4	-14.30	7.1E-15	0.0E+00
5	-14.00	1.4E-14	2.2E-06
6	-13.70	2.8E-14	5.4E-05
7	-13.40	5.6E-14	0.0E+00
8	-13.10	1.1E-13	2.2E-05
9	-12.80	2.2E-13	2.4E-04
10	-12.50	4.5E-13	4.9E-04
11	-12.20	8.9E-13	8.2E-04
12	-11.90	1.8E-12	2.3E-03
13	-11.60	3.6E-12	2.1E-02
14	-11.30	7.1E-12	8.3E-03
15	-11.00	1.4E-11	1.1E-02
16	-10.70	2.8E-11	4.5E-02
17	-10.40	5.6E-11	4.5E-02
18	-10.10	1.1E-10	7.9E-02
19	-9.80	2.2E-10	1.2E-01
20	-9.50	4.5E-10	1.7E-01
21	-9.20	8.9E-10	2.2E-01
22	-8.90	1.8E-09	1.6E-01
23	-8.60	3.6E-09	6.0E-02
24	-8.30	7.1E-09	2.4E-02
25	-8.00	1.4E-08	1.1E-02
26	-7.70	2.8E-08	3.8E-03
27	-7.40	5.6E-08	2.0E-03
28	-7.10	1.1E-07	5.0E-04
29	-6.80	2.2E-07	3.4E-04
30	-6.50	4.5E-07	1.0E-05
31	-6.20	8.9E-07	0.0E+00
32	-5.90	1.8E-06	0.0E+00
33	-5.60	3.6E-06	0.0E+00
34	-5.30	7.1E-06	0.0E+00
35	-4.00	1.4E-05	0.0E+00
36	-3.68	2.8E-05	0.0E+00
37	-3.35	5.6E-05	0.0E+00
38	-3.03	1.1E-04	0.0E+00
39	-2.70	2.2E-04	0.0E+00
40	-2.38	4.5E-04	0.0E+00
41	-2.05	8.9E-04	0.0E+00

付表 C-1 基本ケースにおける深成岩類処分場の処分場スケールのマルチチャンネルモデルの 透水量係数分布

No.	透水量係数(対数値)log ₁₀ T	透水量係数T[m2/s]	チャンネル確率p
1	-15.05	8.9E-16	0.0E+00
2	-14.75	1.8E-15	0.0E+00
3	-14.45	3.6E-15	0.0E+00
4	-14.15	7.1E-15	0.0E+00
5	-13.85	1.4E-14	2.2E-06
6	-13.55	2.8E-14	5.4E-05
7	-13.25	5.6E-14	0.0E+00
8	-12.95	1.1E-13	2.2E-05
9	-12.65	2.2E-13	2.4E-04
10	-12.35	4.5E-13	4.9E-04
11	-12.05	8.9E-13	8.2E-04
12	-11.75	1.8E-12	2.3E-03
13	-11.45	3.6E-12	2.1E-02
14	-11.15	7.1E-12	8.3E-03
15	-10.85	1.4E-11	1.1E-02
16	-10.55	2.8E-11	4.5E-02
17	-10.25	5.6E-11	4.5E-02
18	-9.95	1.1E-10	7.9E-02
19	-9.65	2.2E-10	1.2E-01
20	-9.35	4.5E-10	1.7E-01
21	-9.05	8.9E-10	2.2E-01
22	-8.75	1.8E-09	1.6E-01
23	-8.45	3.6E-09	6.0E-02
24	-8.15	7.1E-09	2.4E-02
25	-7.85	1.4E-08	1.1E-02
26	-7.55	2.8E-08	3.8E-03
27	-7.25	5.6E-08	2.0E-03
28	-6.95	1.1E-07	5.0E-04
29	-6.65	2.2E-07	3.4E-04
30	-6.35	4.5E-07	1.0E-05
31	-6.05	8.9E-07	0.0E+00
32	-5.75	1.8E-06	0.0E+00
33	-5.45	3.6E-06	0.0E+00
34	-5.15	7.1E-06	0.0E+00
35	-4.85	1.4E-05	0.0E+00
36	-4.55	2.8E-05	0.0E+00
37	-4.25	5.6E-05	0.0E+00
38	-3.95	1.1E-04	0.0E+00
39	-3.65	2.2E-04	0.0E+00
40	-3.35	4.5E-04	0.0E+00
41	-3.05	8.9E-04	0.0E+00

2021年6月3日 修正箇所

付属書 番号	ページ	位置 (行など)	修正前(誤)	修正後(正)
4-26	9	3行目	ガラス固化体が地下水と接触して放射性核種が溶出した際,溶存イオン濃度は地下水の水質に 応じた溶解度で制限される。	TRU等廃棄物が地下水と接触して放射性核種が溶出した際、溶存イオン濃度は地下水の水質に応じた溶解度で制限される。
4-26	9	4行目	溶存イオン濃度が溶解度に達している際, <u>ガラス固化体</u> から溶出した放射性核種は固相として沈殿するが,廃棄体近傍に留まらず,コロイドとして人工バリア外部へ移行することが懸念される。	溶存イオン濃度が溶解度に達している際, TRU 等廃棄物から溶出した放射性核種は固相として 沈殿するが、廃棄体近傍に留まらず、コロイド として人工バリア外部へ移行することが懸念さ れる。
6-24	20	表4	充填材中の実効拡散係数の値 低CI濃度地下水: 7×10 ¹⁰ 高CI濃度地下水: 7×10 ¹⁰ 第2次TRUレポート: 8×10 ¹⁰	充填材中の実効拡散係数の値を下記に修正低CI濃度地下水:8×10 ⁻¹⁰ 高CI濃度地下水:8×10 ⁻¹⁰ 第2次TRUレポート:8×10 ⁻¹⁰
6-24	22	表5	<u>d</u> 充填材中の実効拡散係数[m²/s]	充填材中の実効拡散係数[m²/s]
6-24	22	表5	充填材中の実効拡散係数の値 包括的技術報告書(基本ケース): <u>7</u> ×10 ⁻¹⁰	充填材中の実効拡散係数の値を下記に修正 包括的技術報告書(基本ケース): <u>8</u> ×10 ⁻¹⁰
6-24	24	表6	充填材中の実効拡散係数の値 包括的技術報告書(基本ケース): <u>7</u> ×10 ⁻¹⁰	充填材中の実効拡散係数の値を下記に修正 包括的技術報告書(基本ケース): <u>8</u> ×10 ⁻¹⁰
6-24	25	表7	充填材中の実効拡散係数の値 包括的技術報告書(基本ケース): <u>7</u> ×10 ⁻¹⁰	充填材中の実効拡散係数の値を下記に修正 包括的技術報告書(基本ケース): <u>8</u> ×10 ⁻¹⁰
6-25	18	表8	充填材中の実効拡散係数の値 基本ケース(包括的技術報告書): <u>5</u> ×10 ⁻¹⁰	充填材中の実効拡散係数の値を下記に修正 基本ケース(包括的技術報告書): <u>6</u> ×10 ⁻¹⁰
6-26	18	表8	充填材中の実効拡散係数の値 包括的技術報告書(基本ケース): <u>5</u> ×10 ⁻¹⁰	充填材中の実効拡散係数の値を下記に修正 包括的技術報告書(基本ケース): <u>8</u> ×10 ⁻¹⁰

2021年4月28日 修正箇所

概要編

章	ページ	位置 (行など)	修正前(誤)	修正後 (正)
	iv∼v	目次	図表目次の落丁	図表目次を追加
	14	ページー番下の段落	文章の両端が不揃い	文章を両端揃えに修正
	48	図14	(a) ドラム缶用の充填材の高さ寸法を「890~ 1100」と記載 (b) キャニスタ用の充填材の高さ寸法の記載がない	(a) ドラム缶用の充填材の高さ寸法を「890~ 1000」に修正 (b) キャニスタ用の充填材の高さ寸法「1450」 を追記
	119	脚注47	「1.3節の図1参照」の「図1」のフォントサイズ に誤り	「1.3節の図1参照」の「図1」のフォントサイズ を修正
	122	上から3行目 (修正後は上から1行目)	「(2)安全機能を有する処分場の設計と工学技術」のタイトルの前に改行の抜け	p.119の行間を調整することで7.2節をp.120の1行目からとし、「(2)安全機能を有する処分場の設計と工学技術」がp.122の1行目となるように修正
	125	下から2行目 (修正後は下から5行目)	してしていく	していく
	133	上から16行目	参考文献番号の[10]に黄色のハイライトがある	参考文献番号の[10]の黄色のハイライトを削除
	144	下から4行目	箇条書きと「これらのことから」の間の改行 が抜けている	箇条書きと「これらのことから」の間に改行 を追加

本編

本編				
章	ページ	位置 (行など)	修正前(誤)	修正後(正)
2	6	下から4行目	火 <u>災</u> 物密度流	火 <u>砕</u> 物密度流
4	21	表4.2-6	地表面の温度 <u>t</u>	地表面の温度 <u>T</u> o
4	52	図4.4-21	(a) ドラム缶用の充填材の高さ寸法を「890~ 1100」と記載 (b) キャニスタ用の充填材の高さ寸法の記載がない	(a) ドラム缶用の充填材の高さ寸法を「890~ 1000」に修正 (b) キャニスタ用の充填材の高さ寸法「1450」 を追記
6	27	図6.3 - 1	ふるまいに関する記述全体	「付属書6-11 ストーリーボードの作成」の当該 図中の記述と整合させた
6	58	上から1行目	空白行あり	1行詰め
6	113	下から3行目	空白行あり	1行詰め
6	170	上から6行目	0.5行余分に空白行あり	0.5行詰め
6	172	上から1行目	空白行あり	1行詰め
6	177-196 (修正後は 176-195 ページ)	ページ番号		行詰めの影響によりページ番号を各1ページずつ 繰り上げ
6	185 (修正後は 184ペー ジ)	上から1行目	空白行あり	1行詰め

7	11	下から13行目	<u>及</u> び	<u>およ</u> び
7	15	下から4行目	するととも放射線	するととも <u>に</u> 放射線
7	20	下から5行目	それれの	それ <u>ぞ</u> れの
7	21	下から3行目	<u>各種</u> 以降パラメータ	<u>核種</u> 移行パラメータ
7	25	上から16行目	<u>して</u> していく	していく
7	28	上から3行目	図7.2- <u>4</u>	図7.2- <u>5</u>
7	35	上から8行目	<u> </u>	論じ <u>た</u> もの
7	48	上から12行目	としての <u>の</u>	としての
7	49	上から5行目	OEC <u>E</u> /NEA	OEC <u>D</u> /NEA
7	52	上から5行目	改 <u>定</u>	改 <u>訂</u>
7	55	図7.4-1の図中下部	概要調査および精密調査地区 <u>及び</u> 建設地	概要調査および精密調査地区 <u>および</u> 建設地
7	56	上から13行目	地層や岩体 <u>、</u> 断層など	地層や岩体 <u></u> 断層など
7	59	図7.4-2の図中	「 <u>概要調査</u> 地区の選定と評価」 「 <u>概要調査</u> 地区を対象とした概念」	「 <u>精密調査</u> 地区の選定と評価」 「 <u>精密調査</u> 地区を対象とした概念」

付属書 番号	ページ	位置 (行など)	修正前(誤)	修正後(正)
付属書 2-3	2	下から6行目	<u>① ③</u> を計算するための	<u>上記の①~③</u> を計算するための
付属書 2-3	51	下から9行目	「閉鎖後長期の安全評価の対象として選定した 45 個の核種について,30年間と50年間の貯蔵期間後におけるガラス固化体1本あたりの放射能を 算出した結果を表14に示す。また,核種移行解 析で考慮する放射性核種の崩壊系列について図 11に示す。」	「閉鎖後長期の安全評価の対象として選定した45個の核種について,30年間と50年間の貯蔵期間後におけるガラス固化体1本あたりの放射能を算出した結果を表14に示す。閉鎖後長期の安全評価における基本シナリオや変動シナリオでは製造後の貯蔵期間を50年とし,製造から50年経過した時点の放射能インベントリからさらに1,000年経過後の放射能インベントリを計算して与える(本編6.4.1.(v)(b)①参照)。表15に貯蔵期間終了後から1,000年経過したガラス固化体1本に含まれる閉鎖後長期の安全評価の対象となる核種の放射能を示す。また,核種移行解析で考慮する放射性核種の崩壊系列について図11に示す。」
付属書 2-3	52	表14の見出し	安全評価に用いる対象核種と放射能インベントリ	安全評価に用いる対象核種と <u>貯蔵期間終了時の</u> 放 射能インベントリ
付属書 2-3	52	表14	表中「30年」「50年」と記載	「 <u>貯蔵期間</u> 30年」と「 <u>貯蔵期間</u> 50年」に修正
付属書 2-3	52	表の落丁	「表15 安全評価に用いる対象核種と貯蔵期間終 了から1,000年後の放射能インベントリ(ガラス 固化体)」の落丁	「表15 安全評価に用いる対象核種と貯蔵期間終了から1,000年後の放射能インベントリ(ガラス固化体)」の追記
付属書 2-3	52ページ 以降	表番号	_	表の追加に伴い表番号を繰り下げ

付属書 2-3	53	下から14行目	「表 15 に核種移行解析に用いる核種と製造後25年の各グループの放射能インベントリ ⁶ を示した。」	「表 16に廃棄体パッケージAを対象とした閉鎖後長期の安全評価において対象となる核種移行解析に用いる核種と製造後25年の各グループの放射能インベントリ ⁶ を示した。また、廃棄体パッケージBを対象とした閉鎖後長期の安全評価では、製造後25年経過した時点での放射能インベントリからさらに300年経過後の放射能インベントリを用いる。表 17に製造後25年経過からさらに300年経過後の放射能インベントリを用いる。表 17に製造後25年経過からさらに300年経過後の放射能インベントリを示す。」
付属書 2-3	54	表15の見出し	表15 安全評価に用いる対象核種と放射能インベント リ(TRU等廃棄物)	表16 安全評価に用いる対象核種と <u>廃棄体製造から</u> 25年後の放射能インベントリ(TRU等廃棄物)
付属書 2-3	54	表の落丁	「表 17 安全評価に用いる対象核種と製造後25 年経過からさらに300年経過後の放射能インベン トリ(TRU等廃棄物)」の落丁	「表 17 安全評価に用いる対象核種と製造後25 年経過からさらに300年経過後の放射能インベン トリ(TRU等廃棄物)」の追記
付属書 3-32	3	上から9行目	約 <u>2,100</u> 件	約 <u>21,000</u> 件
付属書 3-32	9	上から9行目	図 <u>5</u>	図 <u>6</u>
付属書 3-32	16	上から11行目	N <u>H⁴⁺</u>	$N\underline{H_4}^+$
付属書 3-32	18	上から9行目	<u>を</u> では	では
付属書 3-32	19	上から2行目	メクタイト	<u>ス</u> メクタイト
付属書 3-32	23, 24 (修正後は 23ページ)	表 8	最下部の注釈(※)が表のどこを指しているの か不明確	表中の対象箇所に注釈(※)を明記
付属書 3-32	23, 24 (修正後は 23ページ)	表 8	最下部の注釈(※)中の読点に「、」を使用	最下部の注釈(※)中の読点を「,」に修正
付属書 3-32	23, 24 (修正後は 23ページ)	表 8	1ページに集約可能な表が(1/2), (2/2)として,2ページに掲載	セルの高さを変更して表を一つに集約し, (1/2)(2/2)を削除
付属書 3-32	25, 26 (修正後は 24ページ)	表 9	最下部の注釈(※)が表のどこを指しているの か不明確	表中の対象箇所に注釈(※)を明記
付属書 3-32	25, 26 (修正後は 24ページ)	表 9	最下部の注釈(※)中の読点に「、」を使用	最下部の注釈(※)中の読点を「,」に修正
付属書 3-32	25, 26 (修正後は 24ページ)	表 9	1ページに集約可能な表が(1/2), (2/2)として,2ページに掲載	セルの高さを変更して表を一つに集約し, (1/2)(2/2)を削除
付属書 3-32	27, 28 (修正後は 25ページ)	表 10	最下部の注釈(※)が表のどこを指しているの か不明確	表中の対象箇所に注釈(※)を明記

付属書 3-32	27, 28 (修正後は 25ページ)	表 10	最下部の注釈(※)中の読点に「、」を使用	最下部の注釈(※)中の読点を「,」に修正
付属書 3-32	27, 28 (修正後は 25ページ)	表 10	1ページに集約可能な表が(1/2), (2/2)として,2ページに掲載	セルの高さを変更して表を一つに集約し, (1/2) (2/2) を削除
付属書 3-32	29 (修正後は 27ページ)	上から19行目	最後の著者名の前に "and" の記載漏れ	最後の著者名の前に "and" を追記
付属書 3-32	29 (修正後は 27ページ)	下から10行目	文献ページの記載漏れ	文献のページを追記
付属書 3-32	30 (修正後は 28ページ)	上から8行目	2名の著者名の間の "and" の記載漏れ	2名の著者名の間に "and" を追記
付属書 3-32	30 (修正後は 28ページ)	上から22行目	文献2件の記載漏れ	文献2件(「加藤進、梶原義照(1986)」, 「加藤進、安田善雄、西田英毅(2000)」)を追加
付属書 3-32	30 (修正後は 28ページ)	下から8~11行目	文献の記載順の誤り(「LaZerte, B.D.・・・」→ 「Laaksoharju, M.・・・」の順に記載)	文献の記載順の修正(「Laaksoharju, M.・・・」 →「LaZerte, B.D.・・・」の順に修正)
付属書 3-32	30 (修正後は 28~29 ペー ジ)	下から 5 行目 (修正後は 28 ページの 下から1行目)	文献3件の記載漏れ	文献3件(「松浪武雄(1993)」, 「松浪武雄 (1994)」, 「宮崎哲郎, ・・・(2007)」) を追加
付属書 3-32	31 (修正後は 29ページ)	上から10行目 (修正後は上から20行目)	文献1件の記載漏れ	文献1件(「奥山康子,・・・(2008)」)を追加
付属書 3-32	32 (修正後は 30ページ)	上から1行目 (修正後は上から13行目)	文献1件の記載漏れ	文献1件(「関陽児、・・・(2004)」)を追加
付属書 3-32	32 (修正後は 30ページ)	上から8行目 (修正後は下から20行目)	文献の記載内容の誤り(著者の重複) 最後の著者名の前に "and" の記載漏れ タイトルの記載の誤り("isotopes. SDM-Site")	重複著者(「Gimeno, M.」)を削除 最後の著者名の前に "and" を追記 タイトルの記載を修正("isotopes; SDM-Site")
付属書 3-32	32 (修正後は 30ページ)	下から11行目 (修正後は下から14行目)	最後の著者名の前に "and" の記載漏れ	最後の著者名の前に "and" を追記
付属書 3-32	32 (修正後は 30ページ)	下から6行目 (修正後は下から8行目)	文献1件の記載漏れ	文献1件(「吉田史郎, ・・・(1991)」)を追加

r -				
付属書 4-21	1	図1	ハル缶・インナーバレルの図の輪郭が点線	ハル缶・インナーバレルの図の輪郭を実線に修 正
付属書 4-21	2	3.2.1見出し	フォントがMS明朝	フォントをMSゴシックに修正
付属書 4-21	3	図3	(a) ドラム缶用の充填材の高さ寸法を「890~ 1100」と記載 (b) キャニスタ用の充填材の高さ寸法を 「1550」と記載	(a) ドラム缶用の充填材の高さ寸法を「890〜 1000」に修正 (b) キャニスタ用の充填材の高さ寸法を 「1450」に修正
付属書 4-21	3 (修正後は 4ページ)	3.2.2見出し	フォントがMS明朝	フォントをMSゴシックに修正
付属書 4-21	4	3.2.3見出し	フォントがMS明朝	フォントをMSゴシックに修正
付属書 4-21	5	下から1行目	・廃棄体パッケージBのモルタルは,保守的に蓋 との隙間なく充填されていると仮定した。	削除
付属書 4-35	3~12	全般	強度,応力,圧力の単位にN/mm²,kN/m²を使用	単位をPaに統一(MPa,kPaを使用)
付属書 4-55	1 (修正後は 2ページ)	図1	図1中の表と図が別ページに跨がっている	表と図を同一ページに整理
付属書 6-1	21	式 (3-1)	第2項のfの添え字のiとjが逆(「f _{ji} 」)	第2項のfの添え字のiとjの並びを「f _{ij} 」に修正
付属書 6-1	63	表22のキャプション	GBI 河川	GBI <u>深井戸</u>
付属書 6-14	7	図8	XZ断面とYZ断面の図の配置が逆	XZ断面とYZ断面の図の配置を修正
付属書 6-14	30	図38	XZ断面とYZ断面の図の配置が逆	XZ断面とYZ断面の図の配置を修正
付属書 6-14	42	図61	YZ断面の図がほかの図より大きい	他の図とサイズを合わせた
付属書 6-14	159	図191	XY, YZ, XZ平面投影図の配置に誤り	配置を修正した
付属書 6-14	165	図193	XY, YZ, XZ平面投影図の配置に誤り	配置を修正した
付属書 6-14	170	図195	XY, YZ, XZ平面投影図の配置に誤り	配置を修正した